Problem of the Month
(January 2008)
The problem of tiling equal polyominoes in squares has been well-studied.  This month we investigate tiling equal polyominoes in frames, squares missing from the centers of squares.  We also investigate tiling equal polyominoes in circles, a totally symmetric set of lattice points whose distance from the center is smaller than a constant.  Can you find examples of the smallest frames or circles made from various polyominoes?  What other shapes can be tiled well with equal polyominoes?
ANSWERS
Frame Tilings:
Small Polyominoes
Pentominoes
Hexominoes
Heptominoes
Octominoes
Nonominoes
  (George Sicherman)
 |   (George Sicherman)
 |  
 |   
 | 
Decominoes
  (George Sicherman)
 |   (George Sicherman)
 |   
 | 
Undecominoes
  (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   
 | 
Mike Reid gave these non-trivial frame tilings for some larger L polyominoes:
Off-Center Frame Tilings:
Small Polyominoes
Pentominoes
Hexominoes
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   
 | 
Heptominoes
  (George Sicherman)
 |   (George Sicherman)
 |   
 | 
Octominoes
 
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
 | 
Nonominoes
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
 
 |   (George Sicherman)
 |   
 | 
George Sicherman investigated triangular frames made from polyiamonds...
...and hexagonal frames made from polyhexes:
Circular Tilings:
Small Polyominoes
Pentominoes
Hexominoes
Heptominoes
Octominoes
Nonominoes
  (George Sicherman)
 |   
 | 
Decominoes
Undecominoes
I also investigated tilings of donuts, circles missing from the centers of circles.  I even allowed disconnected regions.  My results are here.
Claudio Baiocchi suggested that we look for full symmetry configurations.  We call these Baiocchi figures.
Baiocchi Figures:
Small Polyominoes
Pentominoes
  (George Sicherman)
 |   (George Sicherman)
 |  
 |  
 |   (George Sicherman)
 |   
 | 
Hexominoes
 
 |  
 |  
 |  
 |   (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |  
 |  
 |  
 |  
 |   
  (George Sicherman)
 |   (Corey Plover)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
 | 
George Sicherman also investigated Baiocchi figures made from other polyforms:
Polyiamonds
The 9-iamonds are here.
Polypents
  (Károly Hajba)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
 
  (George Sicherman)
 |   
 | 
The pentapents can be found here.
Polyhexes
The hexahexes can be found here.
Polyhepts
The pentahepts can be found here.
Polyocts
  (Károly Hajba)
 |   (Károly Hajba)
 |   
 
  (Károly Hajba)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   (George Sicherman)
 |   
  (George Sicherman)
 |   (George Sicherman)
 |   
 | 
The pentaocts can be found here.
The Baiocchi figures for polycubes can be found here.
If you can extend any of these results, please 
e-mail me.  
Click here to go back to Math Magic.  Last updated 1/1/09.