Jeremy Galvagni showed that the minimal (n,n+1) rectangle tiling is (3n+2) × n(n+1), and the minimal (n,n+1) square tiling is n(n+2) × n(n+2) for large n.
Bryce Herdt sent some domino tilings.
Brian Trial found and improved many of the largest best-known tilings.
b \ a | 1 | 2 | 3 | 4 | 5
2
| ![]() 2 × 5 3
| ![]() 7 × 8 ![]() 6 × 8 4
| ![]() 10 × 11 ![]() 8 × 14 ![]() 11 × 12 5
| ![]() 10 × 21 ![]() 13 × 22 ![]() 13 × 14 ![]() 14 × 20 6
| ![]() 11 × 22 ![]() 11 × 16 ![]() 16 × 26 ![]() 22 × 28 (GS) ![]() 17 × 30 7
| ![]() 18 × 25 ![]() 19 × 26 ![]() 20 × 27 ![]() 20 × 37 (GS) ![]() 19 × 27 8
| ![]() 23 × 27 ![]() 26 × 29 ![]() 29 × 29 ![]() 22 × 56 (GS) ![]() 37 × 38 (GS) 9
| ![]() 25 × 32 ![]() 24 × 41 ![]() 30 × 39 ![]() 26 × 60 (GS) ![]() 34 × 48 (GS) 10
| ![]() 29 × 35 ![]() 32 × 36 ![]() 30 × 49 (GS) ![]() 28 × 53 (GS) ![]() 40 × 53 (GS) 11
| ![]() 31 × 48 (GS) ![]() 32 × 51 (BT) ![]() 39 × 51 (BT) ![]() 40 × 48 (GS) ![]() 43 × 57 (GS) 12
| ![]() 35 × 37 (GS) ![]() 27 × 67 (BT) ![]() 44 × 55 (BT) ![]() 46 × 53 (BT) ![]() 45 × 62 (BT) 13
| ![]() 37 × 56 (BT) ![]() 40 × 59 (BT) ![]() 44 × 59 (BT) ![]() 44 × 69 (BT) ![]() 49 × 70 (BT) 14
| ![]() 37 × 70 (BT) ![]() 46 × 63 (BT) ![]() 57 × 63 (BT) ![]() 61 × 62 (BT) ![]() 40 × 93 (GS) 15
| ![]() 40 × 62 (BT) ![]() 39 × 93 (BT) ![]() 48 × 77 (BT) ![]() 37 × 118 (BT) ![]() 59 × 81 (BT) 16
| ![]() 44 × 68 (BT) ?
| ?
| ?
| ?
| |
---|
b \ a | 1 | 2 | 3 | 4 | 5
2
| ![]() 6 × 6 3
| ![]() 11 × 11 ![]() 12 × 12 4
| ![]() 14 × 14 ![]() 16 × 16 ![]() 15 × 15 5
| ![]() 18 × 18 ![]() 18 × 18 (GS) ![]() 25 × 25 ![]() 24 × 24 6
| ![]() 20 × 20 ![]() 24 × 24 ![]() 23 × 23 ![]() 28 × 28 (GS) ![]() 35 × 35 7
| ![]() 23 × 23 ![]() 24 × 24 ![]() 33 × 33 ![]() 39 × 39 (GS) ![]() 45 × 45 (GS) 8
| ![]() 26 × 26 ![]() 31 × 31 ![]() 29 × 29 ![]() 41 × 41 (GS) ![]() 46 × 46 (GS) 9
| ![]() 31 × 31 ![]() 39 × 39 (BT) ![]() 39 × 39 (BT) ![]() 48 × 48 (BT) ![]() 47 × 47 (GS) 10
| ![]() 48 × 48 ![]() 42 × 42 (BT) ![]() 45 × 45 (BT) ![]() 55 × 55 (GS) ![]() 47 × 47 (GS) 11
| ![]() 42 × 42 (BT) ![]() 48 × 48 (BT) ![]() 46 × 46 (BT) ![]() 55 × 55 (BT) ![]() 60 × 60 (BT) 12
| ![]() 44 × 44 (BT) ![]() 48 × 48 (BT) ![]() 53 × 53 (BT) ![]() 54 × 54 (BT) ![]() 60 × 60 (BT) 13
| ![]() 49 × 49 (BT) ![]() 57 × 57 (BT) ![]() 56 × 56 (BT) ![]() 60 × 60 (BT) ![]() 61 × 61 (BT) 14
| ![]() 56 × 56 (BT) ![]() 55 × 55 (BT) ?
| ?
| ?
| |
---|
George Sicherman showed that there are solutions for all the triangular cases as well.
b \ a | 1 | 2 | 3 | 4 | 5
2
| ![]() 6 3
| ![]() 11 (GS) ![]() 12 (GS) 4
| ![]() 14 (GS) ![]() 16 (GS) ![]() 15 (GS) 5
| ![]() 18 (GS) ![]() 18 (GS) ![]() 25 (GS) ![]() 24 (GS) 6
| ![]() 20 (GS) ![]() 24 (GS) ![]() 23 (GS) ![]() 28 (GS) ![]() 35 (GS) 7
| ![]() 26 (GS) ![]() 35 (GS) ![]() 25 (GS) ![]() 38 (GS) ![]() 45 (GS) 8
| ![]() 28 (GS) ![]() 31 (GS) ![]() 42 (GS) ![]() 48 (GS) ![]() 56 (GS) |
---|
b \ a | 1 | 2 | 3 | 4 | 5
2
| ![]() 2 × 5 3
| ![]() 7 × 8 (GS) ![]() 6 × 13 (GS) 4
| ![]() 10 × 11 (GS) ![]() 12 × 15 (GS) ![]() 11 × 12 (BH) 5
| ![]() 10 × 21 (GS) ![]() 14 × 23 (GS) ![]() 13 × 14 (GS) ![]() 20 × 23 (GS) 6
| ![]() 14 × 26 (GS) ![]() 16 × 22 (GS) ![]() 16 × 39 (GS) ![]() 22 × 28 (GS) ![]() 17 × 30 (GS) 7
| ![]() 22 × 25 (GS) ![]() 19 × 34 (GS) ![]() 20 × 27 (GS) ![]() 28 × 36 (GS) ![]() 27 × 38 (GS) 8
| ![]() 27 × 28 (GS) ![]() 14 × 58 (GS) ![]() 28 × 45 (GS) ![]() 35 × 38 (GS) ![]() 38 × 51 (GS) 9
| ![]() 32 × 35 (GS) ![]() 24 × 47 (GS) ![]() 34 × 45 (GS) ![]() 38 × 53 (BT) ![]() 34 × 52 (GS) 10
| ![]() 36 × 42 (GS) ![]() 32 × 48 (GS) ![]() 34 × 55 (GS) ![]() 28 × 53 (GS) ![]() 52 × 56 (GS) 11
| ![]() 38 × 53 (BT) ![]() 38 × 58 (BT) ![]() 42 × 64 (BT) ![]() 46 × 62 (BT) ![]() 44 × 81 (BT) 12
| ![]() 37 × 70 (GS) ![]() 44 × 59 (BT) ![]() 42 × 82 (BT) ![]() 48 × 71 (BT) ![]() 60 × 62 (BT) 13
| ![]() 48 × 67 (BT) ![]() 32 × 102 (BT) ![]() 44 × 74 (BT) ![]() 62 × 76 (BT) ![]() 61 × 74 (BT) 14
| ![]() 60 × 63 (GS) ![]() 47 × 84 (BT) ![]() 35 × 114 (BT) ![]() 58 × 82 (BT) ![]() 38 × 114 (GS) |
---|
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 2/10/12.