How full can we pack a unit square with golden rectangles of any size? Similarly, how full can we pack a unit golden rectangle with squares of any size? If we use the greedy algorithm, every golden rectangle or square used fills a factor of ϕ-1 of the area. Can we improve upon this?
1 s = ϕ = 1.618+ | 2 s = 2 | 3-4 s = 1 + ϕ = 2.618+ | 5-6 s = 2ϕ = 3.236+ | 7-8 s = 2 + ϕ = 3.618+ |
9-10 s = 1 + 2ϕ = 4.236+ | 11-12 s = 3 + ϕ = 4.618+ | 13 s = 3ϕ = 4.854+ | 14-15 s = 5 | 16 s = 2 + 2ϕ = 5.236+ |
17-18 s = 4 + ϕ = 5.618+ | 19-20 s = 1 + 3ϕ = 5.854+ | 21 s = 6 | 22-24 s = 3 + 2ϕ = 6.236+ | 25-26 s = 5 + ϕ = 6.618+ |
27-28 s = 2 + 3ϕ = 6.854+ | 29 s = 7 | 30-32 s = 4 + 2ϕ = 7.236+ | 33-35 s = 6 + ϕ = 7.618+ | 36-37 s = 3 + 3ϕ = 7.854+ (MM) |
38 s = 8 (MM) | 39-40 s = 5ϕ = 8.090+ |
1 s = 1 | 2 s = ϕ = 1.618+ | 3 s = 3/ϕ = 1.854+ | 4 s = 2 | 5-6 s = 1 + ϕ = 2.618+ |
7 s = 1 + 3/ϕ = 2.854+ | 8-9 s = 3 | 10 s = 2ϕ = 3.236+ | 11 s = 1 + 4/ϕ = 3.472+ | 12 s = 2 + ϕ = 3.618+ |
13 s = 6/ϕ = 3.708+ | 14-16 s = 4 | 17 s = 1 + 2ϕ = 4.236+ | 18 s = 7/ϕ = 4.326+ | 19-20 s = 3 + ϕ = 4.618+ |
21 s = 1 + 6/ϕ = 4.708+ | 22 s = 3ϕ = 4.854+ | 23-24 s = 8/ϕ = 4.944+ | 25 s = 5 | 26 s = 2 + 2ϕ = 5.236+ |
27 s = 1 + 7/ϕ = 5.326+ | 28 s = 3 + 4ϕ = 5.472+ | 29-31 s = 4 + ϕ = 5.618+ | 32-33 s = 1 + 3ϕ = 5.854+ | 34 s = 1 + 8/ϕ = 5.944+ |
35-36 s = 6 |
1 s = 1 | 2 s = 2/ϕ = 1.236+ | 3 s = 3/ϕ = 1.854+ | 4-6 s = 2 | 7 s = 2.450+ (MM) |
8 s = 4/ϕ = 2.472+ | 9 s = 2.830+ (MM) | 10 s = 2.945+ (MM) | 11-12 s = 3 | 13-15 s = 5/ϕ = 3.090+ |
16 s = 3.589+ (MM) | 17-18 s = 6/ϕ = 3.708+ | 19 s = 3.876+ (SB) | 20 s = 3.963+ (MM) | 21-24 s = 4 |
25 s = 4.294+ (MM) | 26-28 s = 7/ϕ = 4.326+ | 29 s = 4.676+ (MM) | 30 s = 4.741+ (MM) | 31 s = 4.834+ (MM) |
32 s = 4.921+(MM) | 33 s = 8/ϕ | 34 s = 4.969+ (MM) | 35-40 s = 5 |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 12/27/24.