
Several months ago there was a problem on Math Magic asking what is the
size C(n, m) of a boolean circuit that can determine whether at least m of its n
inputs are 1’s. No good answers were obtained for that problem until two weeks
ago when Sasha Ravsky obtained an upper bound C(2n, 2) ≤ 3n + 1. Since the
solution was not published on the website, but only the results, I e-mailed Sasha
and asked him what his solution was. When I received his e-mail I realized that
his method could be extended to yield an upper bound for C(n, m) for all m.
My modification of his argument is below.

The function we want to represent is

f(x1, . . . , xn) =
∨

A∈[1,n]
|A|=m

∧
i∈A

xi.

We will try to represent this function as

f(x1, . . . , xn) =
k∨

j=1

m∧
i=1

∨
r∈Dj,i

xr,

where Dj are partitions of the set [1, n] into disjoint sets

[1, n] = Dj,1 ∪Dj,2 ∪ · · · ∪Dj,m, Dj,i1 ∩Dj,i2 = ∅,

which are to be determined later. The necessary and sufficient condition on
these partitions for such representation of f to work is that for every m-tuple of
numbers in [1, n] there is a partition Dj such that every element of the m-tuple
belongs to exactly one of Dj,i. In this case we’ll say that collection Dj,i is a
separating partition system. Since to represent function f using this scheme it
is sufficient to use 1 + k(m + 1) gates, our goal is minimize k, the number of
partitions in the partition system.

Sasha Ravsky noted that if m = 2 then Dj,i = {r j’th bit of r is i} is a
separating partition system. This partition system is optimal since one needs
at least log2 n bits of information to distinguish two elements in n-element set.
The problem of constructing the minimal separating partition system for m > 2
seems to be much harder, but a good upper bound on number of elements in
such system can be easily obtained using the standard probabilistic techniques.

Let’s fix some m-tuple of numbers from [1, n], and consider a random par-
tition of the set [1, n] into m sets, where each number can the equal chances of
getting into every of these m sets. The probability, that such partition separates
the m-tuple in question, is obviously m!

mm . The probability, that neither of k′

such random partitions (some of them might be same) separate the m-tuple
is (1 − m!

mm )k. The expected number of m-tuples which are not separated is
therefore t =

(
m
n

)
(1 − m!

mm )k′
, and so there exists at least one partition system

consisting of k′ partitions such that it does not separate at most t m-tuples.
Hence, we can construct a separating partition system consisting of at most

t + k′ = t− logb t + logb

(
m

n

)
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where b = mm

mm−m! . Since
(
m
n

)
< nm/m! and 2− logb 2− logb m! ≤ 0 for m ≥ 2,

k ≤ m logb n.

Thus we have proved a

Theorem 1 For m ≥ 2, C(n, m) ≤ 1 + m(m + 1) logb n.
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