Several months ago there was a problem on Math Magic asking what is the size $C(n, m)$ of a boolean circuit that can determine whether at least m of its n inputs are 1's. No good answers were obtained for that problem until two weeks ago when Sasha Ravsky obtained an upper bound $C\left(2^{n}, 2\right) \leq 3 n+1$. Since the solution was not published on the website, but only the results, I e-mailed Sasha and asked him what his solution was. When I received his e-mail I realized that his method could be extended to yield an upper bound for $C(n, m)$ for all m. My modification of his argument is below.

The function we want to represent is

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{\substack{A \in[1, n] \\|A|=m}} \bigwedge_{i \in A} x_{i} .
$$

We will try to represent this function as

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigvee_{j=1}^{k} \bigwedge_{i=1}^{m} \bigvee_{r \in D_{j, i}} x_{r}
$$

where D_{j} are partitions of the set $[1, n]$ into disjoint sets

$$
[1, n]=D_{j, 1} \cup D_{j, 2} \cup \cdots \cup D_{j, m}, \quad D_{j, i_{1}} \cap D_{j, i_{2}}=\emptyset
$$

which are to be determined later. The necessary and sufficient condition on these partitions for such representation of f to work is that for every m-tuple of numbers in $[1, n]$ there is a partition D_{j} such that every element of the m-tuple belongs to exactly one of $D_{j, i}$. In this case we'll say that collection $D_{j, i}$ is a separating partition system. Since to represent function f using this scheme it is sufficient to use $1+k(m+1)$ gates, our goal is minimize k, the number of partitions in the partition system.

Sasha Ravsky noted that if $m=2$ then $D_{j, i}=\{r \mid j$ 'th bit of r is $i\}$ is a separating partition system. This partition system is optimal since one needs at least $\log _{2} n$ bits of information to distinguish two elements in n-element set. The problem of constructing the minimal separating partition system for $m>2$ seems to be much harder, but a good upper bound on number of elements in such system can be easily obtained using the standard probabilistic techniques.

Let's fix some m-tuple of numbers from $[1, n]$, and consider a random partition of the set $[1, n]$ into m sets, where each number can the equal chances of getting into every of these m sets. The probability, that such partition separates the m-tuple in question, is obviously $\frac{m!}{m^{m}}$. The probability, that neither of k^{\prime} such random partitions (some of them might be same) separate the m-tuple is $\left(1-\frac{m!}{m^{m}}\right)^{k}$. The expected number of m-tuples which are not separated is therefore $t=\binom{m}{n}\left(1-\frac{m!}{m^{m}}\right)^{k^{\prime}}$, and so there exists at least one partition system consisting of k^{\prime} partitions such that it does not separate at most $t m$-tuples. Hence, we can construct a separating partition system consisting of at most

$$
t+k^{\prime}=t-\log _{b} t+\log _{b}\binom{m}{n}
$$

where $b=\frac{m^{m}}{m^{m}-m!}$. Since $\binom{m}{n}<n^{m} / m!$ and $2-\log _{b} 2-\log _{b} m!\leq 0$ for $m \geq 2$,

$$
k \leq m \log _{b} n .
$$

Thus we have proved a
Theorem 1 For $m \geq 2, C(n, m) \leq 1+m(m+1) \log _{b} n$.

