This month we investigate other patterns involving nth powers that give rise to numbers with exactly n different non-zero digits. For example, for what positive integers A and B do A + B and A2 + B2 both contain the same two digits? The largest non-trivial example I've managed to find is 82741 + 144486 = 227227 and 827412 + 1444862 = 27722277277. Are there larger examples? What if we allow the digits in A + B to be different than the digits in A2 + B2? What about higher powers? What other patterns give surprising results?
Here are the largest known nth powers with n digits:
Form | Number of Digits | Largest Known Example
A2 | 2 | 816192 = 6661661161
| A3 | 3 | 1467963 = 3163316636166336
| A4 | 4 | 847594 = 51611121555566262561
| A5 | 5 | 21143255 = 42253114333245121312442314453125 | (Giovanni Resta) A6 | 6 | 45295338616 = 8636167634317137668616 844443347687331783434473474447817161 | (Giovanni Resta) A7 | 7 | 2897061580967 = | 1712789877859251998896815797915181677696 18276828525177119221996256516887927586816 (Giovanni Resta) A8 | 8 | 7164570530948 = | 69425864962262381253935889556533538935158818438 832114326146546514844981265541243248464849346816 (Giovanni Resta) A9 | 9 | 11954349912329 = | 498578646328835566488514727474191378397748897885953663 8328432494741295723697842777912875263643474151585349632 (Giovanni Resta) |
---|
Here are the largest known examples for sums of nth powers with n digits:
Form | Number of Digits | Largest Known Example
A + B | A2 + B2 same 2 | 183425228501 + 438841438125 = 622266666626
| 1834252285012 + 4388414381252 = 226226622266262266222626 (Giovanni Resta) A + B + C | A2 + B2 + C2 A3 + B3 + C3 same 3 | 2675 + 12021 + 21440 = 36136
| 26752 + 120212 + 214402 = 611333666 26753 + 120213 + 214403 = 11611631166136 (Giovanni Resta) A + B + C + D | A2 + B2 + C2 + D2 A3 + B3 + C3+ D3 A4 + B4 + C4 + D4 same 4 | 46 + 271 + 386 + 1224 = 1927
| 462 + 2712 + 3862 + 12242 = 1722729 463 + 2713 + 3863 + 12243 = 1911279727 464 + 2714 + 3864 + 12244 = 2272129192929 (Giovanni Resta) |
---|
Form | Number of Digits | Largest Known Example
A + B | A2 + B2 any 2 | Infinitely Many! | [3]2[3]1 + [3]4[3]1 = [6]6[6]2 [3]2[3]12 + [3]4[3]12 = [2][2]21[1][1]22 (Giovanni Resta) A + B + C | A2 + B2 + C2 A3 + B3 + C3 any 3 | 6421 + 17731 + 42497 = 66649
| 64212 + 177312 + 424972 = 2161612611 64213 + 177313 + 424973 = 82588522882825 (Giovanni Resta) A + B + C + D | A2 + B2 + C2 + D2 A3 + B3 + C3+ D3 A4 + B4 + C4 + D4 any 4 | 487 + 833 + 1198 + 9777 = 12295
| 4872 + 8332 + 11982 + 97772 = 97955991 4873 + 8333 + 11983 + 97773 = 936993665665 4874 + 8334 + 11984 + 97774 = 9139993831893939 (Giovanni Resta) |
---|
Here are the largest known examples for sums of nth powers with 2 digits:
Form | Number of Digits | Largest Known Example
A3 + B3
| 2 | 2489753 + 22884463 = | 11999991191911999911 (Giovanni Resta) A4 + B4 + C4
| 2 | 83764 + 261394 + 571424 = | 11133333313313133313 (Giovanni Resta) A5 + B5 + C5 + D5
| 2 | 23675 + 27635 + 38605 + 41225 = | 2282222888228228282 (Giovanni Resta) A6 + B6 + C6 + D6 + E6
| 2 | 1256 + 1596 + 4226 + 4536 + 14606 = | 9699699696696969699 (Giovanni Resta) A7 + B7 + C7 + D7 + E7 + F7
| 2 | 1387 + 1567 + 1967 + 3187 + 3287 + 3457 = | 1333333133333331113 (Giovanni Resta) A8 + B8 + C8 + D8 + E8 + F8 + G8
| 2 | 438 + 578 + 578 + 728 + 938 + 938 + 1808 = | 1114144444444111141 (Giovanni Resta) A9 + B9 + C9 + D9 + E9 + F9 + G9 + H9
| 2 | 149 + 239 + 449 + 569 + 919 + 959 + 1069 + 1169 = | 6556655556656655665 (Giovanni Resta) |
---|
Here are the largest known examples for some other symmetrical patterns:
Form | Number of Digits | Largest Known Example
A2 + B | A + B2 same 2 | distinct numbers 105662 + 25810 = 111666166
| 10566 + 258102 = 666166666 (George Sicherman) A2 + B + C | A + B2 + C A + B + C2 same 2 | distinct numbers 1402 + 161 + 3161 = 22922
| 140 + 1612 + 3161 = 29222 140 + 161 + 31612 = 9992222 (Giovanni Resta) A2 + B2 + C | A2 + B + C2 A + B2 + C2 same 2 | distinct numbers 482 + 532 + 1053 = 6166
| 482 + 53 + 10532 = 1111166 48 + 532 + 10532 = 1111666 (Giovanni Resta) |
---|
Form | Number of Digits | Largest Known Example
A2 + B | A + B2 any 2 | distinct numbers 277902 + 438177 = 772722277
| 27790 + 4381772 = 191999111119 (Giovanni Resta) A2 + B + C | A + B2 + C A + B + C2 any 2 | distinct numbers 392 + 63 + 11547 = 13131
| 39 + 632 + 11547 = 15555 39 + 63 + 115472 = 133333311 (Giovanni Resta) A2 + B2 + C | A2 + B + C2 A + B2 + C2 any 2 | distinct numbers 1532 + 21532 + 7848 = 4666666
| 1532 + 2153 + 78482 = 61616666 153 + 21532 + 78482 = 66226666 (Giovanni Resta) |
---|
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 3/12/08.