m \ n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1![]() | 2 | 2 | 2![]() | 2+√2/2![]() | 3 | 3 | 3 | 3![]() | 3+√2/2![]() |
1 | √2![]() | 1+√2 | 1+√2 | 1+√2![]() | 3 | 3![]() | (5+√3)/2(MM)![]() | 2+√2 | 2+√2 | (5+√7)/2(MM)![]() | 3.978 (MM)![]() |
2 | 2√2 | 2√2 | 2√2 | 3![]() | 2+√2 | 2+√2 | 2+√2 | 2+√2![]() | 3.883 (MM) | 4 | 4![]() |
3 | 2√2 | 2√2 | 2+√2 | 2+√2 | 2+√2![]() | 8√2/3 (MM)![]() | 1+2√2 | 3.883 (MM)![]() | 4 | 4.297 (MM)![]() | 3+√2 |
4 | 2√2![]() | 5√2/2![]() | 1+2√2 | 1+2√2 | 1+2√2 | 1+2√2![]() | 4 | 4![]() | 4.346 (MM)![]() | 3+√2 | 3+√2 |
5 | 1+2√2![]() | 2+4√2/3(MM)![]() | 3.887 | 3.887 | 3.887![]() | 3√2 | 3+√2 | 3+√2 | 3+√2 | 3+√2 ![]() | 2+2√2 |
6 | 3√2 | 3√2 | 3√2 | 3√2 | 3√2![]() | 3+√2![]() | 4.676 (MM)![]() | 2+2√2 | 2+2√2 | 2+2√2 | 2+2√2![]() |
7 | 3√2 | 3√2 | 3√2 | 3+√2![]() | 1/2+3√2(MM)![]() | 2+2√2 | 2+2√2 | 2+2√2 | 2+2√2![]() | 5.203 (MM)![]() | 1+3√2 |
8 | 3√2 | 3√2 | 2+2√2 | 2+2√2 | 2+2√2![]() | 3+3/√2(MM)![]() | 5.215 | 5.215 | 5.215 (JD)![]() | 1+3√2 | 1+3√2 |
9 | 3√2![]() | 7√2/2![]() | 5.119 (MM)![]() | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2![]() | 4√2![]() |
10 | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2 | 1+3√2![]() | 2+7√2/3(MM)![]() | 5.302 (MM)![]() | 5.576 (MM)![]() | 5.613 (JD)![]() | 5.711 (MM)![]() | 3+2√2 |
11 | 5.482 | 5.482 (MM)![]() | 5.523 (MM)![]() | 2+5/√2(MM)![]() | 4/3+3√2(JD)![]() | 5.607 (JD)![]() | 4√2 | 4√2(MM)![]() | 5.760 (MM)![]() | 3+2√2 | 3+2√2 |
12 | 4√2 | 4√2 | 4√2 | 4√2 | 4√2 | 4√2 | 3+2√2 | 3+2√2 | 3+2√2 | 3+2√2![]() | 2+3√2 |
13 | 4√2 | 4√2 | 4√2 | 4√2 | 4√2![]() | 3+2√2![]() | 6.090 (MM)![]() | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2![]() |
14 | 4√2 | 4√2 | 4√2 | 3+2√2![]() | 1/2+4√2(MM)![]() | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2![]() | 6.521 (MM)![]() | 6.630 |
15 | 4√2 | 4√2 | 2+3√2 | 2+3√2 | 2+3√2![]() | 9/√2![]() | 6.521 (MM)![]() | 6.630 | 6.630 (MM)![]() | 1+4√2 | 1+4√2 |
16 | 4√2![]() | 9/√2![]() | (3+7√2)/2(MM)![]() | 6.607 (MM)![]() | (10+7√2)/3(MM)![]() | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2![]() |
17 | 6.611![]() | (10+7√2)/3(MM)![]() | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2 | 1+4√2![]() | 6.827 | 6.827 (JD)![]() |
18 | (7+√7)/√2 | (7+√7)/√2 | (7+√7)/√2 | (7+√7)/√2 | (7+√7)/√2 | (7+√7)/√2![]() | 6.821 (JD)![]() | 6.886 (JD)![]() | 5√2 | 5√2 | 5√2![]() |
19 | 3√2+8/3![]() | 6.921 (JD)![]() | 6.922 (JD)![]() | 4/3+4√2(JD)![]() | 7.020 (JD)![]() | 7.021 (JD)![]() | 5√2 | 5√2 | 5√2 | 7.125 (MM)![]() | 3+3√2 |
20 | 5√2 | 5√2 | 5√2 | 5√2 | 5√2 | 5√2 | 5√2 | 5√2![]() | 7.174 (MM)![]() | 3+3√2 | 3+3√2![]() |
m \ n | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 3.877 ![]() | 4 | 4 | 4 | 4 | 4![]() | 4.675![]() | (7+√7)/2![]() | 3+4√2/3![]() | 5 |
1 | 4 | 4![]() | 4.362 (MM)![]() | 3+√2 | 3+√2 | 4+1/√2(MM)![]() | 4.839 (MM)![]() | 5 | 5 | 5 |
2 | 4.365 (MM)![]() | 3+√2 | 3+√2 | 3+√2 | (7+√7)/2(MM)![]() | 4+2/√5(MM)![]() | 5 | 5 | 5![]() | 5.350 (MM)![]() |
3 | 3+√2 | 3+√2 | 3+√2(MM)![]() | 2+2√2(MM)![]() | 5 | 5 | 5 | 5.297 (MM)![]() | 4+√2 | 4+√2 |
4 | 4.764 (MM)![]() | 2+2√2 | 4.893 (MM)![]() | 5 | 5 | 5![]() | 5.346 (MM)![]() | 4+√2 | 4+√2 | 4+√2(MM)![]() |
5 | 2+2√2![]() | 5 | 5 (MM)![]() | 1+3√2 | 5.378 (MM)![]() | 4+√2 | 4+√2 | 4+√2(MM)![]() | 5.764 (MM)![]() | 3+2√2 |
6 | 5 (MM)![]() | 1+3√2 | 1+3√2![]() | 4+√2 | 4+√2 | 4+√2(MM)![]() | 4√2 | 3+2√2 | 3+2√2 | 9/2+√2(MM)![]() |
7 | 1+3√2![]() | 4+√2 | 4+√2 | 4√2 | 4√2 | 4√2![]() | 3+2√2 | 3+2√2 | 6 | 6.203 (MM)![]() |
8 | 4+√2 | 4+√2(MM)![]() | 5.776 (MM)![]() | 3+2√2 | 3+2√2 | 3+2√2 | 3+2√2(MM)![]() | 6![]() | 6.215 (MM)![]() | 2+3√2 |
9 | 5.779 (MM)![]() | 3+2√2 | 3+2√2 | 3+2√2 | 6.085 (JD)![]() | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2![]() |
10 | 3+2√2 | 3+2√2 | 3+2√2(MM)![]() | 2+3√2 | 2+3√2 | 2+3√2 | 6.302 (MM)![]() | 5+√2 | 5+√2(MM)![]() | 1+4√2 |
11 | 6.179 (MM)![]() | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2 | 5+√2![]() | 6.593 (MM)![]() | 1+4√2 | 1+4√2(MM)![]() | 4+2√2 |
12 | 2+3√2 | 2+3√2 | 2+3√2 | 2+3√2(MM)![]() | 6.525 (JD)![]() | 1+4√2 | 1+4√2 | 6.764 (JD)![]() | 4+2√2 | 4+2√2![]() |
13 | 2+3√2 | 2+3√2(MM)![]() | 6.630 (JD)![]() | 1+4√2 | 1+4√2 | 1+4√2(MM)![]() | 4+2√2 | 4+2√2![]() | 5√2 | 5√2 |
14 | 6.630 (JD)![]() | 1+4√2 | 1+4√2 | 1+4√2(MM)![]() | 4+2√2 | 4+2√2(MM)![]() | 5√2 | 5√2 | 5√2![]() | 3+3√2 |
15 | 1+4√2 | 1+4√2 | 4+2√2 | 4+2√2 | 5√2 | 5√2 | 5√2 | 3+3√2 | 3+3√2 | 3+3√2 |
16 | 1+4√2![]() | 4+2√2 | 4+2√2(MM)![]() | 5√2 | 5√2 | 5√2(MM)![]() | 3+3√2 | 3+3√2 | 3+3√2 | 7.593 (MM)![]() |
17 | 5√2 | 5√2![]() | 7.190 (MM)![]() | 3+3√2 | 3+3√2 | 3+3√2 | 3+3√2 | 3+3√2(MM)![]() | 7.630 (JD)![]() | 2+4√2 |
18 | 7.193 (MM)![]() | 3+3√2 | 3+3√2 | 3+3√2 | 7.499 (JD)![]() | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2(MM)![]() |
19 | 3+3√2 | 3+3√2 | 3+3√2(MM)![]() | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2 | 5+2√2 | 5+2√2(MM)![]() |
20 | 7.593 (JD)![]() | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2 | 2+4√2(MM)![]() | 5+2√2(MM)![]() | 8.045 (JD)![]() | 1+5√2![]() |
Jeremy Galvagni noticed that multiplying the (m,n) packing by √2 gives a (n,4m) packing.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 3/29/15.