This month we consider the problem of obtaining a pitcher with 4 ounces of water if only some fraction 0<f≤1 of the water poured makes it into the target pitcher, with the rest 1-f leaking out onto the ground. For example, if f=1/2, then 8 → 5 is a solution, and if f=3/4, then 8 → 3 is a solution. The original problem is for f=1.
Clearly there are an infinite number of values of f that lead to solutions, with f=1 the accumulation point. What rational values of f have solutions? What values of f are roots of rational numbers?
f | Shortest Solution | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 8 → 5 → 3 → 8, 5 → 3, 8 → 5 → 3 | ||||||||||||||||||||||||||||||||
1/2 | 8 → 5
3/4 | 8 → 3
| 4/5 | 8 → 5, 8 → 3, 5 → 8
| 5/6 | 8 → 3 → 8 → 5, 8 → 3, 5 → 3 → 5 → 8
| 6/7 | 8 → 3, 8 → 5, 3 → 5, 3 → 8, 5 → 3 → 8
| 7/8 | 8 → 3, 8 → 5
| 8/9 | 8 → 5, 8 → 3, 5 → 3
| 7/11 | 8 → 3 → 5, 8 → 5
| 9/11 | 8 → 3 → 5, 8 → 3 → 5, 8 → 5, 8 → 3, 5 → 3 → 8, 5 → 8
| 10/11 | 8 → 3 → 5, 8 → 3, 8 → 5
| 11/12 | 8 → 3 → 5, 8 → 5, 8 → 3, 5 → 3
| 12/13 | 8 → 5, 8 → 3, 5 → 3, 5 → 8
| 13/14 | 8 → 3 → 8 → 5 → 3 → 8, 5 → 8 → 5 → 3 → 8
| 15/16 | 8 → 3 → 5, 8 → 5, 8 → 3, 5 → 3, 5 → 8
| 15/17 | 8 → 3 → 5, 8 → 3, 8 → 5, 3 → 5, 3 → 8, 5 → 3 → 8
| 15/19 | 8 → 3 → 5, 8 → 3, 8 → 5, 3 → 5, 3 → 8, 5 → 8
| 18/19 | 8 → 3 → 5, 8 → 3, 8 → 5, 3 → 5, 3 → 8, 5 → 3, 5 → 8
| |
f | Shortest Solution | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
√1/2 | 8 → 3 → 5, 8 → 3 → 5
√2/3
| 8 → 3 → 5, 8 → 3 → 5, 8 → 3, 5 → 8
| √3/4
| 8 → 5 → 3, 5 → 8, 3 → 5, 8 → 3 → 5, 3 → 8, 5 → 8 → 5
| √4/5
| 8 → 5, 8 → 3, 5 → 8 → 5
| √5/7
| 8 → 5 → 3 → 5 → 3 → 5, 8 → 5 → 8
| √7/8
| 8 → 5 → 3, 8 → 5 → 8
| √7/9
| 8 → 3, 8 → 5, 3 → 8, 5 → 3 → 8 → 3 → 8, 5 → 3, 8 → 5
| √7/11
| 8 → 5 → 3 → 5, 8 → 3 → 8, 5 → 8
| √10/11
| 8 → 5 → 3 → 5 → 3, 8 → 5 → 8
| √9/13
| 8 → 3 → 5, 8 → 3 → 5, 8 → 3 → 5 → 8, 3 → 5, 8 → 5
| √12/13
| 8 → 5, 8 → 3, 5 → 8, 3 → 5, 8 → 5, 8 → 3, 5 → 3, 5 → 8
| √13/14
| 8 → 5 → 3 → 5 → 3 → 5 → 3, 8 → 5 → 8
|
| ∛1/2
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 5
| ∛2/3
| 8 → 3, 8 → 5, 3 → 8, 5 → 3 → 8, 5 → 3, 8 → 5 → 8
| ∛4/5
| 8 → 5, 8 → 3, 5 → 8 → 5 → 8
| ∛7/8
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 3, 8 → 5
| ∛8/9
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 5, 8 → 3, 5 → 3 → 5 → 3
| ∛7/11
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 3 → 5 → 8 → 5
| ∛10/11
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 3 → 5 → 8 → 3, 8 → 5
|
| ∜1/2
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 5 → 8
| ∜2/3
| 8 → 3, 8 → 5, 3 → 8, 5 → 3 → 8, 5 → 3, 8 → 5 → 8 → 5
| ∜4/5
| 8 → 5, 8 → 3, 5 → 8 → 5 → 8 → 5
| ∜7/8
| 8 → 3, 8 → 5, 3 → 8, 5 → 8 → 5 → 3, 8 → 5 → 8
|
| 6√4/5
| 8 → 5, 8 → 3, 5 → 8 → 5 → 8 → 5 → 8 → 5
| |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 3/1/20.