3 | 5 | 8 |
1 | 4 | 6 |
We are interested in how small the numbers in an average array can be. Specifically, what is the smallest possible value of the largest number in an average array of a given size? What if all the numbers have to be different? What if the average includes diagonally adjacent cells? What about larger dimensional arrays?
Clearly C(1,n)=Cx(1,n)=C*(1,n)=Cx*(1,n)=n, as the array (1 2 3 . . . n ) works.
Joseph DeVincentis noticed that Cx*(2,n) is undefined for n≥2, as there are no such arrays. Also, he showed that Cx(2,n)=3: one such array is filled with 2's except for one column which contains a 1 and a 3.
Brendan Owen wrote a computer program to generate average arrays. He generated all the data below.
He showed that Cx(n1, n2, . . . , 2)=3, and that C(n1, n2, . . .) and Cx(n1, n2, . . .) always exist. He also showed that Cx*(n1, n2, . . . , 2) doesn't exist. The only other known values which don't appear to exist are Cx*( . . .,3,3,3).
Here are some answers for small arrays:
m \ n | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 8 | 12 | 19 | 42 | 98 |
3 | 4 | 5 | 14 | 11 | 63 | 27 | 298 |
4 | 8 | 14 | 11 | 50 | 2816 | 1632 | 15004 |
5 | 12 | 11 | 50 | 37 | 1245 | 1159 | 39608 |
6 | 19 | 63 | 2816 | 1245 | 143 | 70668 | 74283746 |
7 | 42 | 27 | 1632 | 1159 | 70668 | 3853 | 4667448 |
8 | 98 | 298 | 15004 | 39608 | 74283746 | 4667448 | 471247 |
9 | 154 | 69 | 6937 | 7275 | 622677 | 216143 | 31057338 |
10 | 107 | 1221 | 223244 | 54541 | 34716123 | 14658527 | 7988513801295 |
11 | 572 | 179 | 198830 | 75291 | 4522574 | 40619575 | 58727863626 |
12 | 934 | 6819 | 851928 | 1212200 | 82212839 | 14072629988 | 1157365463811298 |
13 | 2132 | 467 | 438744 | 607435 | 1010388604 | 115245795 | |
14 | 539 | 21893 | 136296090 | 181087528 | 34860663827 | 21481359503 | |
15 | 3825 | 1221 | 2220533 | 1225261 | 2227981245 |
m \ n | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
2 | 4 | 8 | 8 | 26 | 19 | 94 |
3 | 8 | 30 | 74 | 269 | 356 | 3309 |
4 | 8 | 74 | 62 | 960 | 2816 | 118668 |
5 | 26 | 269 | 960 | 417 | 5502 | 4276501 |
6 | 19 | 356 | 2816 | 5502 | 6085 | 989568 |
7 | 94 | 3309 | 118668 | 4276501 | 989568 | 206991 |
8 | 98 | 11178 | 15004 | 50446504 | 74283746 | 236701922202 |
9 | 348 | 10351 | 3399418 | 92694437 | 547462302 | 474044608301 |
10 | 107 | 28028 | 223244 | 42601245 | 34716123 | 27317507372 |
11 | 1296 | 519141 | 201464714 | 76429856053 | 19876549906 | 11912444546191029 |
12 | 934 | 56511 | 851928 | 3914071518 | 82212839 | 36025114345204896 |
13 | 4834 | 6511653 | 1659128426 | 78122151013 | 75644545049024 | 1857217354169779821 |
14 | 539 | 4798118 | 136296090 | 981143881088 | 34860663827 | 334722240784573 |
15 | 18038 | 3319643 | 2866207958 | 176981282511 | 126494851419642 |
m \ n | 3 | 4 | 5 | 6 |
---|---|---|---|---|
3 | 7 | 64 | 29 | 643 |
4 | 64 | 115 | 1247 | 14774206 |
5 | 29 | 1247 | 261 | 89972 |
6 | 643 | 14774206 | 89972 | 52593 |
7 | 135 | 96672 | 5511 | 98206320 |
8 | 3832 | 136644951 | 608992 | 64066638865904 |
9 | 643 | 3740452 | 58631 | 26102324864 |
10 | 136690 | 6347782194286 | 418808411 | 141881269264428327946 |
11 | 3077 | 72339267 | 312221 | 1721307821730 |
12 | 3242093 | 4159327027119583 | 278668008656 | 11208236199692349184890772 |
13 | 14739 | 5595833084 | 6651971 | 1812108279351038 |
14 | 26058442 | 58866692131428799 | 1886445877264 | 281486448978113626690459320 |
15 | 70615 | 216432682702 | 70864611 | 476607238512548682 |
m \ n | 3 | 4 | 5 |
---|---|---|---|
3 | 615 | 1250 | 3087 |
4 | 1250 | 5754 | 353073 |
5 | 3087 | 353073 | 2132027 |
6 | 85702 | 14774206 | 268488939 |
7 | 832207 | 461490870 | 1753185101 |
8 | 964411 | 136644951 | 1972426351 |
9 | 75516831 | 302307431550 | 3443919804825 |
10 | 87752352 | 6347782194286 | 6614878861143 |
11 | 2247987605 | 12139568762399 | 36878438722065 |
12 | 32183551352 | 4159327027119583 | 500316181326089640 |
13 | 622344644563 | 129785024254373690 | 8297069251057289337 |
14 | 721258992031 | 58866692131428799 | 6347210584170775952 |
15 | 56497436627651 | 28110275546239432420 | 2484311052067594484723 |
size | C( ) | C*( ) | Cx( ) | Cx*( ) |
---|---|---|---|---|
2×2 | 3 | 4 | 3 | - |
2×2×2 | 6 | - | 3 | - |
2×2×2×2 | 9 | - | 3 | - |
2×2×2×2×2 | 33 | - | 3 | - |
2×2×2×2×2×2 | 27 | - | 3 | - |
3×3 | 5 | 30 | 7 | 615 |
3×3×3 | 17 | - | 119 | - |
3×3×3×3 | 53 | - | 15691 | - |
4×4 | 11 | 62 | 115 | 5754 |
4×4×4 | 661 | 25569 | 3976182887 | 36786773864239435495 |
5×5 | 37 | 615 | 261 | 2132027 |
5×5×5 | 25009 | 10572852329 | ||
6×6 | 143 | 6085 | 52593 | 34135139 |
7×7 | 3853 | 206991 | 50906913 | 11752974558260469 |
8×8 | 471247 | 199490791 | 970213363 | 103551920949676 |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 3/7/99.