Suppose no power of n can be written as a product using one of each digit. What is the smallest k for which some power of n can be factored using exactly k of each digit? For example, 6751269 × 823543 × 81 × 49 × 7 = 2113, using two of each digit 1-9.
Another way to generalize this is to ask which numbers have two different factorizations, one using each digit once, and one using only copies of one digit. This would include solutions such as 5476 × 198 × 32 = 2 × 2 × 2 × 2 × 2 × 22 × 222 × 222.
What are the answers in other bases?
n | Using 1-9 | Using 0-9 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | see below | 536870912 × 4 = 231 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | see below | see below | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | see below | 536870912 × 536870912 × 4 × 4 = 431
5
| ≥17
| ≥10
| 6
| 72 × 54 × 36 × 9 × 8 × 1 = 69
| (Kevin Savage) 576 × 81 × 9 × 4 × 3 × 2 = 69 576 × 243 × 9 × 8 × 1 = 69 3456 × 972 × 18 = 610 5184 × 72 × 9 × 6 × 3 = 610 3456 × 978 × 108 = 611
| 10368 × 72 × 54 × 9 = 611 7
| ≥17
| ≥10
| 8
| see below
| ≥ 2
| 9
| ≥5
| see below
| 10
| ≥3 | ≥3
| 11
| ≥17
| ≥10
| 12
| 576 × 24 × 9 × 8 × 3 × 1 = 126
| 1536 × 729 × 8 × 4 = 127 3072 × 1458 × 96 = 128
| 5308416 × 972 = 129 13
| ≥17
| ≥10
| 14
| 537824 × 196 = 147
| 470596 × 19208 × 343 × 128 × 56 × 7 = 1415
| 470596 × 25088 × 343 × 196 × 7 × 2 × 1 = 1414 470596 × 307328 × 56 × 49 × 28 × 1 × 1 = 1414 7529536 × 43904 × 16807 × 28 × 1 = 1415 8605184 × 470596 × 1372 × 392 = 1416 15059072 × 686 × 343 × 128 × 49 × 7 = 1415 15059072 × 76832 × 38416 × 49 = 1416 40353607 × 1792 × 98 × 56 × 28 × 14 = 1415 40353607 × 1792 × 1568 × 49 × 28 = 1415 40353607 × 5488 × 1792 × 196 × 2 = 1415 564950498 × 17210368 × 32 × 7 = 1416 253097823104 × 784 × 196 × 56 = 1416 775112083256 × 43904 × 896 = 1417 15
| ≥3 | ≥3
| 16
| see below
| ≥ 2
| 17
| ≥17
| ≥10
| 18
| 54 × 27 × 9 × 8 × 6 × 3 × 1 = 185
| 96 × 81 × 54 × 27 × 3 = 186 972 × 54 × 36 × 18 = 186 1458 × 72 × 36 × 9 = 186 2187 × 96 × 54 × 3 = 186 104976 × 5832 = 187
| 19
| ≥17
| ≥10
| 20
| ≥3 | ≥3
| 21
| 6751269 × 823543 × 81 × 49 × 7 = 2113
| 453789 × 64827 × 21609 × 5103 = 2114
| 68641485507 × 1029 × 27 × 9 × 3 × 3 = 2113 22
| 2357947691 × 5324 × 16 × 8 × 8 = 2212
| ≥ 3
| 23
| ≥17
| ≥10
| 24
| 576 × 48 × 32 × 9 × 1 = 245
| 576 × 128 × 9 × 4 × 3 = 245 3072 × 54 × 16 × 9 × 8 = 246
| 25
| ≥17
| ≥10
| 26
| ≥ 3
| 9653618 × 70304 × 2197 × 52 × 8 × 4 = 2613
| 27
| see below
| see below
| 28
| 98 × 56 × 32 × 14 × 7 = 285
| (Richard Sabey) 392 × 56 × 14 × 8 × 7 = 285 (Richard Sabey) 784 × 392 × 56 × 1 = 285 (Richard Sabey) 1568 × 49 × 32 × 7 = 285 (Richard Sabey) 1568 × 392 × 7 × 4 = 285 (Richard Sabey) 25088 × 10976 × 343 × 256 × 49 × 7 × 1 = 2811
| 50176 × 9604 × 5488 × 392 × 32 × 7 × 1 = 2812 50176 × 19208 × 343 × 256 × 49 × 8 × 7 = 2812 50176 × 19208 × 343 × 256 × 98 × 7 × 4 = 2812 50176 × 50176 × 343 × 98 × 49 × 28 × 2 = 2812 100352 × 38416 × 256 × 98 × 49 × 7 × 7 = 2812 307328 × 9604 × 512 × 56 × 49 × 8 × 7 × 1 = 2812 307328 × 9604 × 512 × 98 × 56 × 7 × 4 × 1 = 2812 307328 × 12544 × 10976 × 98 × 56 = 2812 823543 × 50176 × 4096 × 98 × 7 × 2 × 1 = 2812 2809856 × 9604 × 512 × 343 × 7 × 7 × 1 = 2812 15059072 × 3136 × 64 × 49 × 28 × 8 × 7 = 2812 15059072 × 3136 × 98 × 64 × 28 × 7 × 4 = 2812 40353607 × 8192 × 256 × 49 × 8 × 7 × 1 = 2812 40353607 × 8192 × 256 × 98 × 7 × 4 × 1 = 2812 29
| ≥17
| ≥10
| 30
| 9375 × 24 × 18 × 6 = 305
| 84375 × 16 × 9 × 2 = 305 18750 × 9 × 6 × 4 × 3 × 2 = 305
| 93750 × 162 × 48 = 306 93750 × 648 × 12 = 306 31
| ≥17
| ≥10
| 32
| see below
| ≥ 2
| 33
| ≥3 | ≥3
| 34
| ≥3 | ≥3
| 35
| 64339296875 × 42875 × 1 × 1 = 3510
| ≥ 3
| 36
| 3456 × 972 × 18 = 365
| 5184 × 72 × 9 × 6 × 3 = 365 ≥ 2
| 37
| ≥17
| ≥10
| 38
| 39617584 × 2 = 385
| 39617584 × 39617584 × 2 × 2 = 3810
| 39
| ≥ 3
| 4826809 × 4563 × 507 × 27 × 9 × 3 × 1 × 1 = 3910
| 40
| ≥3 | ≥3
| 41
| ≥17
| ≥10
| 42
| 756 × 49 × 28 × 3 × 1 = 424
| 504 × 98 × 21 × 7 × 6 × 3 = 425
| 504 × 126 × 98 × 7 × 3 = 425 3087 × 56 × 21 × 9 × 4 = 425 3087 × 98 × 56 × 7 × 1 = 425 19208 × 54 × 7 × 6 × 3 = 425 19208 × 567 × 4 × 3 = 425 43
| ≥17
| ≥10
| 44
| 77948684 × 1936 × 512 × 352 = 4410
| 937024 × 58564 × 30976 × 8 × 2 × 1 × 1 = 4410
| 45
| 4782969 × 84375 × 625 × 3 × 1 × 1 = 459
| 87890625 × 43046721 × 15 × 9 × 3 = 4511
| 474609375 × 19683 × 2025 × 81 = 4511 46
| ≥3 | ≥3
| 47
| ≥17
| ≥10
| 48
| 576 × 32 × 9 × 8 × 4 × 1 = 484
| 24576 × 9 × 8 × 3 × 1 = 484 ≥ 2
| 49
| ≥17
| ≥10
| 50
| ≥3 | ≥3
| 51
| ≥3 | ≥3
| 52
| ≥ 3
| 5429503678976 × 104 × 32 × 8 × 1 = 5210
| 5429503678976 × 2048 × 13 × 1 = 5210 53
| ≥17
| ≥10
| 54
| 54 × 36 × 27 × 18 × 9 = 544
| ≥ 2
| 55
| ≥3 | ≥3
| 56
| 3584 × 196 × 7 × 2 = 564
| 19208 × 4096 × 412 × 343 × 56 × 8 × 7 × 7 = 5610
| 50176 × 1024 × 343 × 256 × 98 × 98 × 7 = 5610 470596 × 25088 × 14336 × 1792 = 5610 470596 × 351232 × 4096 × 8 × 8 × 7 × 1 = 5610 15059072 × 14336 × 896 × 784 × 2 = 5610 58720256 × 10976 × 343 × 98 × 14 = 5610 30840979456 × 1372 × 128 × 56 = 5610 57
| ≥3 | ≥3
| 58
| ≥3 | ≥3
| 59
| ≥17
| ≥10
| 60
| 1875 × 32 × 9 × 6 × 4 = 604
| 1875 × 96 × 24 × 3 = 604 84375 × 9216 = 605 3750 × 9 × 8 × 6 × 4 × 2 × 1 = 604
| 18750 × 432 × 96 = 605 61
| ≥17
| ≥10
| 62
| ≥3 | ≥3
| 63
| 583443 × 9261 × 567 × 189 × 27 = 639
| 64827 × 15309 = 635
| 64
| see below
| ≥ 2
| 65
| ≥3 | ≥3
| 66
| ≥ 2
| 790614 × 528 × 3 = 665
| 69574032 × 18 = 665 67
| ≥17
| ≥10
| 68
| ≥ 3
| 96550276 × 17408 × 4913 × 32 × 8 = 6810
| 69
| 839523 × 128547 × 4761 × 69 = 699
| 328509 × 4761 = 695
| 70
| 4375 × 196 × 28 = 704
| 9604 × 3125 × 8 × 7 = 705
| 71
| ≥17
| ≥10
| 72
| 1728 × 96 × 54 × 3 = 724
| 3456 × 972 × 8 × 1 = 724 ≥ 2
| 73
| ≥17
| ≥10
| 74
| ≥ 3
| 239892608 × 50653 × 74 × 74 × 1 × 1 = 749
| 75
| ≥3 | ≥3
| 76
| 877952 × 6859 × 361 × 32 × 4 × 4 × 1 = 768
| 23104 × 6859 × 5776 × 304 × 19 × 8 × 2 = 769
| 77
| ≥3 | ≥3
| 78
| 6591 × 78 × 24 × 3 = 784 | (Bryce Herdt) 39546 × 78 × 12 = 784 507 × 39 × 26 × 18 × 4 = 784
| 257049 × 8 × 6 × 3 × 1 = 784 79
| ≥17
| ≥10
| 80
| ≥3 | ≥3
| 81
| ≥5
| see below
| 82
| ≥3 | ≥3
| 83
| ≥17
| ≥10
| 84
| 81 × 56 × 49 × 32 × 7 = 784
| 392 × 81 × 56 × 7 × 4 = 784 3456 × 98 × 21 × 7 = 784 3528 × 147 × 96 = 784 7056 × 98 × 24 × 3 × 1 = 784
| 7056 × 294 × 8 × 3 × 1 = 784 10976 × 54 × 28 × 3 = 784 85
| ≥3 | ≥3
| 86
| ≥ 3
| 159014 × 79507 × 86 × 86 × 43 × 32 × 2 = 869
| 87
| ≥3 | ≥3
| 88
| 5153632 × 8192 × 7744 × 968 = 889
| 10903552 × 3872 × 968 × 176 × 44 = 889
| 89
| ≥17
| ≥10
| 90
| 16875 × 432 × 9 = 904
| ≥ 2
| 91
| ≥3 | ≥3
| 92
| 736 × 529 × 184 = 924
| ≥ 2
| 93
| ≥3 | ≥3
| 94
| ≥3 | ≥3
| 95
| ≥3 | ≥3
| 96
| 4718592 × 6 × 3 = 964
| ≥ 2
| 97
| ≥17
| ≥10
| 98
| ≥ 3
| 823543 × 10976 × 2401 × 98 × 56 × 7 = 989
| 823543 × 470596 × 19208 × 16 × 7 = 989 11529602 × 470596 × 343 × 8 × 8 × 7 = 989 40353607 × 98 × 98 × 56 × 14 × 7 × 2 × 2 × 1 = 988 40353607 × 1568 × 98 × 49 × 7 × 2 × 2 × 1 = 988 99
| ≥3 | ≥3
| |
Here are the solutions for k≥4 that wouldn't fit nicely in the above table:
n | Min k | Expression |
---|---|---|
2, 4, 8, 16, 32, 64 | 5 | 17179869184 × 8589934592 × 33554432 × 16777216 × 256 × 64 × 32 × 8 = 2138 = 469 = 846 = 6423
137438953472 × 8589934592 × 16777216 × 65536 × 8192 × 16 × 8 × 4 × 4 × 2 = 2135 = 845 = 3227 137438953472 × 8589934592 × 16777216 × 65536 × 8192 × 64 × 8 × 4 × 2 × 1 = 2135 = 845 = 3227 137438953472 × 8589934592 × 16777216 × 65536 × 8192 × 128 × 64 × 4 = 2138 = 469 = 846 = 6423 137438953472 × 8589934592 × 268435456 × 16777216 × 8192 × 16 = 2139 137438953472 × 68719476736 × 8589934592 × 256 × 256 × 8 × 4 × 2 × 1 × 1 × 1 = 2128 = 464 = 1632 137438953472 × 68719476736 × 8589934592 × 256 × 256 × 128 × 4 × 1 × 1 = 2131 137438953472 × 68719476736 × 8589934592 × 512 × 256 × 16 × 8 × 4 × 2 × 1 = 2133 137438953472 × 68719476736 × 8589934592 × 512 × 256 × 64 × 8 × 2 × 1 × 1 = 2133 137438953472 × 68719476736 × 8589934592 × 512 × 256 × 128 × 16 × 4 = 2136 = 468 = 1634 137438953472 × 68719476736 × 8589934592 × 512 × 256 × 128 × 64 × 1 = 2136 = 468 = 1634 137438953472 × 68719476736 × 8589934592 × 512 × 512 × 64 × 16 × 8 × 2 = 2138 = 469 = 846 = 6423 |
3, 27 | 4 | 7625597484987 × 1594323 × 19683 × 6561 × 243 × 81 × 27 = 369 = 2723
7625597484987 × 1594323 × 19683 × 6561 × 2187 × 243 = 369 = 2723 |
n | Min k | Expression |
---|---|---|
3, 9, 27, 81 | 6 | 4052555153018976267 × 10460353203 × 3486784401 × 4782969 × 19683 × 81 × 27 × 27 × 9 × 9 = 3117 = 2739
4052555153018976267 × 10460353203 × 3486784401 × 4782969 × 19683 × 729 × 81 × 27 × 9 = 3118 = 959 4052555153018976267 × 10460353203 × 3486784401 × 4782969 × 19683 × 729 × 729 × 81 = 3119 4052555153018976267 × 10460353203 × 3486784401 × 4782969 × 19683 × 2187 × 27 × 9 × 9 = 3117 = 2739 4052555153018976267 × 10460353203 × 3486784401 × 4782969 × 19683 × 2187 × 729 × 9 = 3118 = 959 4052555153018976267 × 847288609443 × 31381059609 × 43046721 × 19683 × 27 × 27 × 9 = 3119 4052555153018976267 × 847288609443 × 31381059609 × 43046721 × 19683 × 729 × 27 = 3120 = 960 = 2740 = 8130 26588814358957503287787 × 10460353203 × 1162261467 × 43046721 × 59049 × 9 × 9 × 9 = 3119 92709463147897837085761925410587 × 282429536481 × 10460353203 × 6561 × 9 = 3122 = 961 |
Here are the ways to factor a number using one of each digit or only one type of digit. (The digits in red can be omitted to give factorizations of all but one digit equal to factorizations of only that digit.)
n | Using 1-9 | Using 0-9 |
---|---|---|
2 | 256 × 148 × 37 × 9 = 28 × 2222
352 × 96 × 74 × 8 × 1 = 212 × 22 × 222 512 × 96 × 37 × 8 × 4 = 218 × 222 592 × 48 × 37 × 6 × 1 = 27 × 2222 592 × 64 × 37 × 18 = 29 × 2222 592 × 74 × 8 × 6 × 3 × 1 = 27 × 2222 592 × 74 × 36 × 8 × 1 = 28 × 2222 592 × 176 × 8 × 4 × 3 = 211 × 22 × 222 592 × 384 × 176 = 213 × 22 × 222 814 × 256 × 37 × 9 = 26 × 22 × 2222 968 × 512 × 74 × 3 = 210 × 222 × 222 1452 × 968 × 37 = 224 × 222 1584 × 296 × 37 = 24 × 22 × 2222 1936 × 528 × 74 = 25 × 223 × 222 1968 × 542 × 37 = 23 × 222 × 22222 3168 × 592 × 74 = 27 × 22 × 2222 3256 × 74 × 9 × 8 × 1 = 24 × 22 × 2222 3256 × 198 × 74 = 2 × 222 × 2222 4736 × 592 × 18 = 210 × 2222 5476 × 32 × 9 × 8 × 1 = 28 × 2222 5476 × 192 × 8 × 3 = 29 × 2222 5476 × 198 × 32 = 25 × 22 × 2222 6512 × 37 × 9 × 8 × 4 = 26 × 22 × 2222 8954 × 37 × 12 × 6 = 222 × 2222 8954 × 176 × 3 × 2 = 22 × 223 × 222 9472 × 1536 × 8 = 219 × 222 9768 × 352 × 4 × 1 = 27 × 222 × 222 9768 × 5324 × 1 = 224 × 222 32856 × 74 × 9 × 1 = 2 × 2223 35816 × 74 × 9 × 2 = 2 × 222 × 2222 53724 × 968 × 1 = 224 × 222 61952 × 48 × 37 = 210 × 222 × 222 61952 × 74 × 8 × 3 = 210 × 222 × 222 | 407 × 352 × 96 × 8 × 1 = 210 × 222 × 222
592 × 407 × 8 × 6 × 3 × 1 = 25 × 22 × 2222 592 × 407 × 36 × 8 × 1 = 26 × 22 × 2222 704 × 592 × 16 × 8 × 3 = 215 × 22 × 222 968 × 512 × 407 × 3 = 28 × 223 × 222 968 × 704 × 352 × 1 = 210 × 224 1936 × 528 × 407 = 23 × 224 × 222 3168 × 592 × 407 = 25 × 222 × 2222 3256 × 407 × 9 × 8 × 1 = 22 × 222 × 2222 4096 × 528 × 37 × 1 = 214 × 22 × 222 4107 × 352 × 96 × 8 = 210 × 22 × 2222 4107 × 592 × 8 × 6 × 3 = 25 × 2223 4107 × 592 × 36 × 8 = 26 × 2223 4107 × 3256 × 9 × 8 = 22 × 22 × 2223 4608 × 592 × 37 × 1 = 211 × 2222 5476 × 1089 × 32 = 23 × 222 × 2222 7104 × 968 × 352 = 210 × 223 × 222 8954 × 3072 × 16 = 212 × 222 × 222 10952 × 768 × 4 × 3 = 211 × 2222 10952 × 864 × 37 = 25 × 2223 17908 × 256 × 4 × 3 = 29 × 222 × 222 17908 × 352 × 6 × 4 = 26 × 223 × 222 19536 × 704 × 8 × 2 = 211 × 222 × 222 30976 × 512 × 8 × 4 = 220 × 222 52096 × 37 × 18 × 4 = 27 × 22 × 2222 61952 × 407 × 8 × 3 = 28 × 223 × 222 90354 × 726 × 8 × 1 = 223 × 2222 90354 × 768 × 2 × 1 = 27 × 22 × 2222 98304 × 65712 = 217 × 2222 2150896 × 74 × 3 = 2 × 222 × 222 × 2222 3748096 × 512 = 213 × 224 536870912 × 4 = 231 4380756192 = 22 × 2222 × 22222 |
3 | 24057 × 19683 = 315 × 33
406593 × 81 × 27 = 35 × 33 × 3332 406593 × 2187 = 35 × 33 × 3332 41065893 × 27 = 3 × 3332 × 3333 | |
4 | 256 × 148 × 37 × 9 = 43 × 4442
352 × 96 × 74 × 8 × 1 = 45 × 44 × 444 592 × 74 × 36 × 8 × 1 = 43 × 4442 3168 × 592 × 74 = 42 × 44 × 4442 4736 × 592 × 18 = 44 × 4442 5476 × 32 × 9 × 8 × 1 = 43 × 4442 5476 × 198 × 32 = 4 × 44 × 4442 9472 × 1536 × 8 = 49 × 444 9768 × 352 × 4 × 1 = 42 × 442 × 444 | 592 × 407 × 8 × 6 × 3 × 1 = 4 × 44 × 4442
968 × 512 × 407 × 3 = 42 × 443 × 444 968 × 704 × 352 × 1 = 43 × 444 4096 × 528 × 37 × 1 = 46 × 44 × 444 4107 × 592 × 8 × 6 × 3 = 4 × 4443 7104 × 968 × 352 = 43 × 443 × 444 10952 × 864 × 37 = 4 × 4443 17908 × 256 × 4 × 3 = 43 × 442 × 444 17908 × 352 × 6 × 4 = 4 × 443 × 444 19536 × 704 × 8 × 2 = 44 × 442 × 444 30976 × 512 × 8 × 4 = 49 × 442 52096 × 37 × 18 × 4 = 42 × 44 × 4442 61952 × 407 × 8 × 3 = 42 × 443 × 444 90354 × 768 × 2 × 1 = 42 × 44 × 4442 |
5 | 840269375 × 1 = 5 × 552 × 55555 | |
6 | 72 × 54 × 36 × 9 × 8 × 1 = 69
96 × 81 × 54 × 37 × 2 = 66 × 666 216 × 54 × 37 × 9 × 8 = 66 × 666 576 × 81 × 9 × 4 × 3 × 2 = 69 576 × 243 × 9 × 8 × 1 = 69 726 × 594 × 8 × 3 × 1 = 62 × 663 1369 × 54 × 27 × 8 = 62 × 6662 1458 × 296 × 37 = 62 × 6662 1584 × 72 × 9 × 6 × 3 = 67 × 66 1628 × 54 × 37 × 9 = 66 × 6662 1728 × 594 × 6 × 3 = 67 × 66 2178 × 96 × 54 × 3 = 65 × 662 2376 × 1584 × 9 = 65 × 662 3168 × 72 × 54 × 9 = 68 × 66 3256 × 81 × 74 × 9 = 6 × 66 × 6662 3456 × 198 × 27 = 67 × 66 3456 × 297 × 18 = 67 × 66 3456 × 972 × 18 = 610 3564 × 72 × 9 × 8 × 1 = 67 × 66 4356 × 198 × 72 = 63 × 663 4356 × 297 × 8 × 1 = 62 × 663 4356 × 792 × 18 = 63 × 663 4356 × 972 × 8 × 1 = 65 × 662 4752 × 96 × 81 × 3 = 68 × 66 4752 × 198 × 36 = 65 × 662 4752 × 396 × 18 = 65 × 662 5184 × 72 × 9 × 6 × 3 = 610 5184 × 2376 × 9 = 68 × 66 5346 × 792 × 8 × 1 = 65 × 662 5476 × 891 × 3 × 2 = 66 × 6662 6534 × 72 × 9 × 8 × 1 = 65 × 662 7128 × 96 × 54 × 3 = 68 × 66 7326 × 1584 × 9 = 62 × 662 × 666 7326 × 5184 × 9 = 65 × 66 × 666 21384 × 576 × 9 = 68 × 66 35816 × 729 × 4 = 62 × 662 × 666 43956 × 27 × 8 × 1 = 63 × 66 × 666 43956 × 72 × 18 = 64 × 66 × 666 47952 × 36 × 18 = 66 × 666 53946 × 72 × 8 × 1 = 66 × 666 175824 × 36 × 9 = 64 × 66 × 666 192456 × 37 × 8 = 64 × 66 × 666 351648 × 297 = 62 × 662 × 666 351648 × 972 = 65 × 66 × 666 431568 × 792 = 65 × 66 × 666 1479852 × 6 × 3 = 6 × 666 × 6666 1539648 × 72 = 68 × 66 3519648 × 27 = 63 × 66 × 6666 4319568 × 72 = 66 × 6666 6479352 × 8 × 1 = 65 × 6666 372594816 = 64 × 663 | 407 × 352 × 81 × 9 × 6 = 63 × 662 × 666
1056 × 729 × 48 × 3 = 68 × 66 1089 × 576 × 324 = 66 × 662 3456 × 297 × 108 = 68 × 66 3456 × 972 × 108 = 611 4059 × 271 × 8 × 6 × 3 = 62 × 66 × 66666 4356 × 792 × 108 = 64 × 663 4752 × 396 × 108 = 66 × 662 5832 × 407 × 16 × 9 = 65 × 66 × 666 6504 × 738 × 9 × 2 × 1 = 64 × 66666 6504 × 738 × 12 × 9 = 65 × 66666 8019 × 576 × 4 × 3 × 2 = 68 × 66 8019 × 3256 × 74 = 662 × 6662 9504 × 81 × 37 × 6 × 2 = 65 × 66 × 666 9504 × 726 × 18 × 3 = 64 × 663 9504 × 2178 × 6 × 3 = 64 × 663 9504 × 2673 × 8 × 1 = 66 × 662 9504 × 7128 × 6 × 3 = 67 × 662 10368 × 72 × 54 × 9 = 611 17908 × 5346 × 2 = 663 × 666 24057 × 1936 × 8 = 64 × 663 39072 × 1458 × 6 = 65 × 66 × 666 43956 × 108 × 72 = 65 × 66 × 666 47952 × 108 × 36 = 67 × 666 47952 × 13068 = 63 × 662 × 666 57024 × 198 × 6 × 3 = 66 × 662 76032 × 54 × 18 × 9 = 69 × 66 128304 × 576 × 9 = 69 × 66 295704 × 18 × 6 × 3 = 63 × 6662 591408 × 36 × 27 = 64 × 6662 591408 × 3267 = 662 × 6662 593406 × 72 × 8 × 1 = 65 × 66 × 666 790614 × 528 × 3 = 665 1942056 × 37 × 8 = 64 × 6662 4105728 × 9 × 6 × 3 = 69 × 66 31049568 × 72 = 65 × 663 41065893 × 72 = 6662 × 6666 58074192 × 6 × 3 = 62 × 662 × 6666 69574032 × 18 = 665 3421097856 = 65 × 66 × 6666 3759820416 = 64 × 662 × 666 |
7 | 86247 × 539 × 1 = 77 × 7772 | 20867 × 539 × 41 = 772 × 77777
5021863 × 49 × 7 = 72 × 774 |
8 | 592 × 48 × 37 × 6 × 1 = 8 × 8882
592 × 74 × 8 × 6 × 3 × 1 = 8 × 8882 592 × 384 × 176 = 83 × 88 × 888 814 × 256 × 37 × 9 = 88 × 8882 4736 × 592 × 18 = 82 × 8882 6512 × 37 × 9 × 8 × 4 = 88 × 8882 | 592 × 407 × 36 × 8 × 1 = 88 × 8882
968 × 512 × 407 × 3 = 883 × 888 4107 × 592 × 36 × 8 = 8883 8954 × 3072 × 16 = 88 × 82 × 882 × 888 17908 × 256 × 4 × 3 = 8 × 882 × 888 61952 × 407 × 8 × 3 = 883 × 888 |
9 | 24057 × 19683 = 97 × 99
406593 × 81 × 27 = 9 × 99 × 9992 406593 × 2187 = 9 × 99 × 9992 |
Here are the smallest solutions in some other small bases:
n | base 2 | base 3 | base 4 | base 5 | base 6 | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 10 = 101
200222 × 100111 = 2122 | 102020102 × 2 × 1 × 1 = 2112 102020102 × 11 × 2 = 2121 102020102 × 121 = 2122 ≥10
| 1003 × 13 × 4 × 4 × 2 × 2 = 231 | 1003 × 31 × 4 × 4 × 2 × 2 = 232 1003 × 224 × 13 × 4 = 233 1003 × 224 × 31 × 4 = 234 101532 × 30544 × 2 = 242 | 34250304 × 52 × 1 × 1 = 241 3
| 1001 = 1110
| ≥10
| 202023 × 1101 × 3 × 3 = 331 | 10303203 × 21 × 21 = 331 2001233301 × 21 = 332 21132042 × 10404 × 3 × 3 = 334 | 2211023334 × 10404 = 340 24115052350444043 × 50213 × 50213 × 213 = 3115 | 504423025235552210014043 × 43 × 3 × 1 × 1 × 1 = 3111 504423025235552210014043 × 43 × 13 × 1 × 1 = 3112 4
| 100 × 1 = 1001
| 102020102 × 2 × 1 × 1 = 421 | 102020102 × 11 × 2 = 422 ≥10
| 1003 × 13 × 4 × 4 × 2 × 2 = 413 | 1003 × 224 × 13 × 4 = 414 101532 × 30544 × 2 = 421
| 5
| 1001110001 = 101100
| 210102201 = 1220
| 23012202233002323011 × 300311 × 1 × 1 = 11112 | 23012202233002323011 × 300311 × 11 = 11113 ≥10
| 321043523205 × 1401405 × 325 × 41 = 541 | 104322123314405005 × 325 × 41 × 5 = 541 6
| 100100 × 1 × 1 = 11010 | 11011000 = 11011 20 × 1 = 201
| 3120 = 123
| 204 × 102 × 31 × 4 × 3 = 1112 | 1034 × 204 × 3 × 2 × 1 = 1111 10043 × 413 × 2 × 2 = 1112 40332 × 102 × 4 × 1 = 1112 1043 × 52 = 105
| 7
| 110001 = 11110
| 201200112020012021 × 21 × 1 = 21102
| 1122033002033203213 × 211201 × 301 = 13103 | 1122033002033203213 × 10012213 × 1 = 13102 310321032003021212322013 × 301 × 1 = 13103 ≥10
| ≥10
| 8
| 1000 × 1 × 1 = 10001
| 102020102 × 1012 × 1012 × 2 = 2222 | 102020102 × 100111 × 2 × 2 × 2 = 2222 ≥10
| 1003 × 224 × 13 × 4 = 1311
| 203504 × 30544 × 1104 × 332 × 52 × 52 × 1 × 1 = 1225 | 34250304 × 101532 × 30544 × 52 × 5 × 1 × 1 = 1225 1550104015504 × 332 × 332 × 12 × 4 × 4 × 2 = 1230 1550104015504 × 332 × 332 × 24 × 24 × 1 = 1230 1550104015504 × 332 × 332 × 144 × 2 × 2 = 1230 9
| 1001 = 10011
| ≥10
| 2001233301 × 21 = 2113
| 2211023334 × 10404 = 1420
| 504423025235552210014043 × 43 × 13 × 1 × 1 = 1334
| 10
| 1010 = 10101
| 100021 × 2 × 2 × 1 = 10110
| 133100 × 302 × 22 × 1 = 2212 | 332200 × 302 × 11 × 1 = 2212 ≥3
| 30304 × 41 × 5 × 5 × 2 × 2 × 1 = 1411 | 30304 × 2152 × 14 × 5 = 1412 35052 × 104 × 41 × 32 = 1412 1401405 × 332 × 5 × 2 = 1412 12323504 × 1054 = 1412 |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 4/1/09.