Problem of the Month (May 2003)
This month's problem comes from my favorite math site: mathpuzzle.com. A snake is a sequence of unit line segments that are non-overlapping except that each one begins where the previous one ends. A d degree snake is a snake all of whose angles with the horizontal are multiples of d. We are interested in the longest d degree snake that will fit inside a square of side s.
The discussion at mathpuzzle.com has mostly been about the longest snakes that can fit inside a square of side 2:
s=2, d=45 length 15 Found by Roger Phillips
| s=2, d=30 length 20 Found by Susan Hoover
| s=2, d=22.5 length 32 Found by Jon K McLean
|
What are the longest 30o snakes you can find in some small squares? How about 22.5o snakes? What about the longest snakes that fit inside rectangles? circles?
ANSWERS
Here are the longest known 45o snakes inside small squares:
s=1/√2, d=45 length 1
| s=1, d=45 length 4
| s=2-1/√2, d=45 length 7
| s=1+1/√2, d=45 length 10
| s=2, d=45 length 15 Found by Roger Phillips
|
s=3-1/√2, d=45 length 17
| s=1+√2, d=45 length 19
| s=4-√2, d=45 length 21
|
Here are the longest known 30o snakes inside small squares:
s=√3/2, d=30 length 2
| s=1, d=30 length 4
| s=3-√3, d=30 length 7
| s=3/2, d=30 length 10
| s=(5-√3)/2, d=30 length 11 |
s=7/2-√3, d=30 length 13
| s=1+√3/2, d=30 length 14
| s=(9-3√3)/2, d=30 length 15
|
Here are the longest known 22.5o snakes inside small squares:
s=.708, d=22.5 length 1
| s=.924, d=22.5 length 2
| s=1, d=22.5 length 6
| s=1.077, d=22.5 length 7
| s=1.229, d=22.5 length 9
| s=1.323, d=22.5 length 10
|
s=1.542, d=22.5 length 12
| s=1.690, d=22.5 length 16
| s=1.914, d=22.5 length 18
|
Here are the longest known 18o snakes inside small squares:
s=.810, d=18 length 2
| s=.952, d=18 length 3
| s=1, d=18 length 6
| s=1.049, d=18 length 9
|
s=1.147, d=18 length 11
| s=1.289, d=18 length 12
| s=1.310, d=18 length 13
|
Here are the longest known 45o snake loops inside small squares:
s=1, d=45 length 4
| s=1+1/√2, d=45 length 8
| s=2, d=45 length 12
|
s=3-1/√2, d=45 length 16
| s=4-√2, d=45 length 18
|
Here are the longest known 30o snake loops inside small squares:
s=1, d=30 length 5
| s=3/2, d=30 length 8
| s=5/2-√3/2, d=30 length 12
|
Here are the longest 45o snakes inside some small rectangles:
| 0 | 1/√2 | 1 | 2-1/√2 | 1+1/√2 | 2√2-1 |
1/√2 | | |
1 | | | |
2-1/√2 | | | | |
1+1/√2 | | | | | |
2 | | | | | | |
Here is the longest 30o snake inside a 2x3 rectangle:
length 39 (Dave Langers)
|
Here are the longest 30o snakes inside some equilateral triangles:
s=1, d=30 length 2
| s=2, d=30 length 9 (Serhiy Grabarchuk)
| s=3, d=30 length 21 (Dave Langers)
|
Here are the longest 30o snakes inside some circles:
r=1, d=30 length 12 (Peter
Grabarchuk)
| r=3/2, d=30 length 33 (Dave Langers)
|
Trevor Green and Jeremy Galvagni worked on an efficient snake in rectangles of width 1 and d small. The basic idea is shown below:
Serhiy Grabarchuk found the longest 30o snakes inside regular polygons:
d=30 length 6
| d=30 length 11
| d=30 length 14
| d=30 length 18
|
Serhiy Grabarchuk also found the longest 30o snake on the surface of a unit cube. The red lines are on the front faces, and the blue lines are on the back faces.
In November 2006, Al Zimmerman held a contest to find the largest possible 360/N degree snakes inside a circle of diameter D, for small N and D. Below is a table showing the best results.
Lengths of Longest Snakes
D \ N | 5 | 7 | 8 | 9 | 10 | 11 | 12
|
---|
2
|
| 7 Andrea Concaro
| 8 Andrea Concaro
| 11 Andrea Concaro
| 9 Andrea Concaro
| 11 Andrea Concaro
| 12 Peter Grabarchuk
|
---|
3
| 17 Andrea Concaro
| 20 Andrea Concaro
| 22 Andrea Concaro
| 27 Andrea Concaro
| 23 Vadim Trofimov
| 34 Vadim Trofimov
| 33 Leonid Shishlo
|
---|
4
| 33 Andrea Concaro
| 43 Vadim Trofimov
| 44 Vadim Trofimov
| 59 Vadim Trofimov
| 50 Specht, Viertel, and Wohlgemuth
| 77 Moritz Franckenstein
| 71 Hermann Jurksch
|
---|
5
| 57 Vadim Trofimov
| 81 Vadim Trofimov
| 78 Hermann Jurksch
| 111 Pfoertner, Sigg, and Nagel
| 91 Mark Beyleveld
| 148 Hugo Pfoertner
| 121 Hermann Jurksch
|
---|
6
| 88 Markus Sigg
| 122 Specht, Viertel, and Wohlgemuth
| 123 Michael van Fondern
| 192 Specht, Viertel, and Wohlgemuth
| 148 Sigg and Pfoertner
| 241 Pfoertner, Rosenthal, and Sigg
| 198 Vadim Trofimov
|
---|
7
| 125 Jurksch and Pfoertner
| 176 Hugo Pfoertner
| 179 Markus Sigg
| 269 Sigg and Pfoertner
| 221 Jurksch and Pfoertner
| 369 Sigg and Pfoertner
| 288 Hermann Jurksch
|
---|
8
| 172 Hugo Pfoertner
| 247 Hermann Jurksch
| 248 Hugo Pfoertner
| 371 Sigg and Pfoertner
| 318 Pfoertner and Jurksch
|
---|
9
| 236 Hugo Pfoertner
| 325 Sigg and Pfoertner
| 327 Hermann Jurksch
| 509 Sigg and Pfoertner
|
---|
10
| 317 Hermann Jurksch
| 419 Hermann Jurksch
| 444 Pfoertner and Jurksch
|
---|
11
| 393 Hugo Pfoertner
| 533 Hermann Jurksch
|
---|
12
| 478 Pfoertner and Jurksch
|
---|
13
| 559 Hermann Jurksch
|
---|
14
| 681 Pfoertner and Jurksch
|
---|
|
If you can extend any of these results, please
e-mail me.
Click here to go back to Math Magic. Last updated 9/29/20.