Problem of the Month (May 2008)
Let n < m be positive integers. What is the largest shape with the property that n of them can be packed inside a square of area n, and m of them can be packed inside a square of area m ? Can you beat any of the results below?
ANSWERS
Jeremy Galvagni noticed that if m=(a/b)2n, then area 1 could be trivially covered. He also showed that when n=m–k, that area √(1–k/m) can be covered using thin rectangles:

He later improved this bound to area 2√(m/n) + 3√(n/m) – 4 when n is even, and √(n/m) + 2n√(n/m)/(n+1) + 2√(mn)/(n+1) – 4n/(n+1) when n is odd.
Joe DeVincentis noticed that if k is the smallest square number greater than n, then we can use n of k squares, for a fill fraction of n/k > n/(n+2√n) → 1 as n → ∞.
Here are the best known solutions, together with the proportion of the area covered. Click on the pictures for the figures of n regions in squares of area n.
n=1
m=2
 2√2 – 2 = .828+
| m=3
 (2√3 + 3) / 8 = .808+ (Gavin Theobald)
| m=4
 1
| m=5
 .889+
|
m=6
 7/√6 – 2 = .857+ (Gavin Theobald)
| m=7
 (25√7 – 49) / 20 = .857+ (Gavin Theobald)
| m=8
 √2 – 1/2 = .914+
| m=9
 1
|
m=10
 .906+ (Gavin Theobald)
| m=11
 2√11 – 23/4 = .883+ (Gavin Theobald)
| m=12
 .897+ (Gavin Theobald)
| m=13
 .892+ (Gavin Theobald)
|
m=14
 .913+ (Gavin Theobald)
| m=15
 .937+ (Gavin Theobald)
| m=16
 1
| |
n=2
m=3
 2√3 – 5/2 = .964+
| m=4
 1
| m=5
 .948+ (Gavin Theobald)
| m=6
 (51 - 26√3)/6 = .994+ (Gavin Theobald)
|
m=7
 .969+ (Gavin Theobald)
| m=8
 1
| m=9
 .973+ (Gavin Theobald)
| m=10
 √10 + √5 - √2 - 3 = .984+ (Maurizio Morandi)
|
m=11
 .957+ (Gavin Theobald)
| m=12
 (36 - 5√6)/24 = 0.989+ (Maurizio Morandi)
| m=13
 .963+ (Gavin Theobald)
| m=14
 .986+ (Maurizio Morandi)
|
m=15
 .978+ (Gavin Theobald)
| m=16
 1
| |
n=3
m=4
 2√3 – 5/2 = .964+
| m=5
 .960+ (Gavin Theobald)
| m=6
 6√2 – 15/2 = .985+ (Gavin Theobald)
| m=7
 (224√2 – 35) / 289 = .975+ (Gavin Theobald)
|
m=8
 (2√6 – 2) / 3 = .966+
| m=9
 .974+ (Gavin Theobald)
| m=10
 .975+ (Maurizio Morandi)
| m=11
 .961+ (Maurizio Morandi)
|
m=12
 1
| m=13
 .964+ (Maurizio Morandi)
| m=14
 (224√2 – 35) / 289 = .975+ (Gavin Theobald)
| m=15
 .966+ (Gavin Theobald)
|
m=16
 √3 – 3/4 = .982+ (Gavin Theobald)
| |
n=4
m=5
 .974+ (Maurizio Morandi)
| m=6
 (36 – 5√6) / 24 = .989+ (Maurizio Morandi)
| m=7
 63/64 = .984+ (Joe DeVincentis)
| m=8
 1
|
m=9
 1
| m=10
 .986+ (Maurizio Morandi)
| m=11
 .981+ (Maurizio Morandi)
| m=12
 (36 - 7√3)/24 = .994+ (Maurizio Morandi)
|
m=13
 .985+ (Maurizio Morandi)
| m=14
 .986+ (Maurizio Morandi)
| m=15
 .978+ (Gavin Theobald)
| m=16
 1
| |
n=5
m=6
 .973+ (Maurizio Morandi)
| m=7
 35/36 = .972+
| m=8
 .975+ (Maurizio Morandi)
| m=9
 .977+ (Maurizio Morandi)
|
m=10
 .974+ (Maurizio Morandi)
| m=11
 .9618+ (Maurizio Morandi)
| m=12
 .965+ (Maurizio Morandi)
| m=13
 .964+ (Gavin Theobald)
|
m=14
 35/36 = .972+
| m=15
 .954+ (Gavin Theobald)
| m=16
 (4√5 – 4)/5 = .988+ (Gavin Theobald)
| |
If you can extend any of these results, please
e-mail me.
Click here to go back to Math Magic. Last updated 12/16/09.