For small n, the best packing of square with side n is by squares of sides n–1 and 1, with waste 2n–2.
15 waste=21 | 17 waste=29 | 18 waste=20 | 19 waste=25 | 20 waste=30 |
21 waste=12 (JD) (GS) | 22 waste=19 | 23 waste=24 | 24 waste=17 | 25 waste=13 (JD) |
26 waste=13 | 27 waste=18 (GS) | 28 waste=14 | 29 waste=19 (JD) | 30 waste=14 |
31 waste=15 (GS) | 32 waste=15 | 33 waste=15 | 34 waste=20 (GS) | 35 waste=15 |
36 waste=20 (GS) | 37 waste=16 | 38 waste=22 (GS) | 39 waste=16 (BZ) (GS) | 40 waste=16 |
41 waste=17 (GS) | 42 waste=21 (BZ) | 43 waste=22 (GS) | 44 waste=15 (MM) | 45 waste=13 (GS) |
46 waste=20 (MM) | 47 waste=18 (MM) | 48 waste=18 (MM) | 49 waste=14 (MM) | 50 waste=16 (MM) |
51 waste=17 (GS) | 52 waste=15 (GS) | 53 waste=16 (GS) | 54 waste=15 (MM) | 55 waste=12 (GS) |
56 waste=15 (MM) | 57 waste=4 (GS) | 58 waste=11 (MM) | 59 waste=8 (GS) | 60 waste=14 (MM) |
61 waste=8 (GS) | 62 waste=12 (MM) | 63 waste=8 (MM) | 64 waste=11 (MM) | 65 waste=14 (MM) |
66 waste=11 (MM) | 67 waste=8 (MM) | 68 waste=6 (GS) | 69 waste=10 (MM) | 70 waste=2 (MM) |
71 waste=13 (GS) | 72 waste=5 (MM) | 73 waste=9 (MM) | 74 waste=10 (MM) | 75 waste=4 (GS) |
76 waste=12 (MM) | 77 waste=10 (GS) | 78 waste=13 (MM) | 79 waste=12 (MM) | 80 waste=9 (MM) |
11 waste=10 | 12 waste=11 | 13 waste=12 | 14 waste=6 | 15 waste=14 |
16 waste=12 | 17 waste=6 | 18 waste=6 | 19 waste=10 | 20 waste=4 |
21 waste=6 | 22 waste=5 | 23 waste=9 | 24 waste=4 | 25 waste=5 |
26 waste=2 | 27 waste=11 | 28 waste=3 | 29 waste=2 | 30 waste=2 |
31 waste=8 | 32 waste=0 | 33 waste=6 | 34 waste=6 | 35 waste=9 (GS) |
36 waste=4 | 37 waste=6 | 38 waste=5 | 39 waste=8 | 40 waste=4 (JD) |
41 waste=4 (GS) | 42 waste=5 (GS) | 43 waste=2 (MM) | 44 waste=3 (JD) | 45 waste=7 (MM) |
46 waste=9 (JD) | 47 waste=5 (MM) | 48 waste=7 (JD) | 49 waste=4 (MM) | 50 waste=8 (MM) |
51 waste=2 (MM) | 52 waste=7 (JD) | 53 waste=8 (MM) | 54 waste=6 (MM) | 55 waste=2 (MM) |
56 waste=7 (MM) | 57 waste=8 (MM) | 58 waste=5 (MM) | 59 waste=3 (MM) | 60 waste=8 (MM) |
Richard Sabey told me that the only other squares in almost squares with waste=0 smaller than n=100 are the ones below:
80 waste=0 | 96 waste=0 | 97 waste=0 |
Since the area of every almost square is even, the waste has the same parity as n.
11 waste=9 | 12 waste=10 | 13 waste=1 | 14 waste=12 | 15 waste=3 |
16 waste=0 | 17 waste=1 | 18 waste=0 | 19 waste=1 | 20 waste=0 |
21 waste=1 (GS) | 22 waste=0 | 23 waste=1 (GS) | 24 waste=0 | 25 waste=1 |
26 waste=0 (GS) | 27 waste=1 (GS) | 28 waste=0 | 29 waste=1 | 30 waste=0 |
31 waste=1 | 32 waste=0 | 33 waste=1 | 34 waste=0 | 35 waste=1 |
36 waste=0 | 37 waste=1 (GS) | 38 waste=0 (GS) | 39 waste=1 (GS) | 40 waste=0 |
41 waste=1 (JD) | 42 waste=0 (GS) | 43 waste=1 (GS) | 44 waste=0 (GS) | 45 waste=1 (GS) |
46 waste=0 (GS) | 47 waste=1 (GS) | 48 waste=0 (GS) | 49 waste=1 (GS) | 50 waste=0 (GS) |
Apparently this trend continues, with the minimum waste being possible for large n.
6 waste=2 | 7 waste=6 | 8 waste=2 | 9 waste=8 | 10 waste=0 |
11 waste=6 | 12 waste=0 | 13 waste=4 | 14 waste=0 | 15 waste=0 |
16 waste=2 | 17 waste=4 | 18 waste=0 | 19 waste=2 | 20 waste=0 |
21 waste=0 | 22 waste=0 (GS) | 23 waste=0 (GS) | 24 waste=0 | 25 waste=0 |
26 waste=0 | 27 waste=0 (GS) | 28 waste=0 | 29 waste=0 | 30 waste=0 |
31 waste=0 (GS) | 32 waste=0 | 33 waste=0 | 34 waste=0 | 35 waste=0 |
36 waste=0 (GS) | 37 waste=0 | 38 waste=0 | 39 waste=0 | 40 waste=0 |
41 waste=0 (GS) | 42 waste=0 (GS) | 43 waste=0 (GS) | 44 waste=0 (GS) | 45 waste=0 (GS) |
46 waste=0 (GS) | 47 waste=0 (GS) | 48 waste=0 (GS) | 49 waste=0 (GS) | 50 waste=0 (GS) |
51 waste=0 (GS) | 52 waste=0 (GS) | 53 waste=0 (GS) | 54 waste=0 (GS) | 55 waste=0 (GS) |
Apparently this trend continues, with the waste=0 being possible for large n.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 1/2/16.