1. Most recreational math enthusiasts know that 153 is a narcissistic number because 13 + 53 + 33 = 153. In other words, if n{k} stands for the sum of the kth powers of the digits of n, we have 153{3} = 153. A full list of the 88 narcissistic numbers can be found here.
A generalization of narcissistic numbers are recurring digital invariants, or RDI's. For example 55{3} = 250, 250{3} = 133, and 133{3} = 55, which we abbreviate 55{3,3,3} = 55. These are simply cycles rather than fixed points of this map. A partial list of RDI's can be found here.
We are interested in a further generalization of this idea. For a given positive integer n, what is the smallest list of powers for which n{n1, n2, n3, ... nk} = n? For example, 18{1,3,1} = 18 because 18{1} = 9, 9{3} = 729, and 729{1} = 18. We call such numbers generalized recurring digital invariants, or GRDI's. Of course smallest could mean shortest, smallest sum, or smallest maximum element.
What are the best results for large n? How about n=2008? What numbers are GRDI's?
2. How close can a sum of the form Σ ± aibi be to 0 if the ai and bi are the numbers from 1–2n? What are the minimal differences for large n? Can the difference ever be exactly 0? If not, how fast do these minimal differences grow?
3. For k>1 and n>1, what is the smallest collection of k different nth powers that have exactly the same collection of digits? For example, for k=2 and n=3, we have 53 = 125 and 83 = 512. How about larger values of k and n?
4. The equation 24 = 42 is the only non-trivial integer equation of xy = yx. But if we are allowed to have more than one term on each side, there are other true equations where the bases and exponents have been switched, including: 23 + 25 + 35 + 43 + 62 + 72 = 32 + 52 + 53 + 34 + 26 + 27. Can you find some solutions with fewer terms?
n | min length | min sum | min max |
---|---|---|---|
10 | none | ||
11 | {1,7,1} | {1,2,2,2,2,2,1,2,2,2,1} | |
12 | {7,1} | {2,2,1,3,3,2,1} | |
13 | {1,4,1} | {1,2,2,2,1} | |
14 | {4,1} | {2,1,2,3,2,1} | |
15 | {2,4,2} | {1,2,2,3,2,3,2,1} | |
16 | {2,4,1} | {1,2,2,1} | |
17 | {3,2,2} | {2,2,2,2,2,1} | |
18 | {1,3,1} | ||
19 | {4,1} | {2,3,3,2} | |
20 | {13,1} | {2,4,4,1} | {2,2,2,2,2,2,2,2} |
21 | {13,1} | {2,2,1,4,2} | {2,2,2,2,3,3,3,3,2,3,2} |
22 | {13,1} | {1,7,1} | {3,2,2,2,3,2} |
23 | {1,7,1} | {4,1,4,4,3,2} | |
24 | {5,7,1} | {1,3,5,1} | {3,2,3,3,2,3,2} |
25 | {7,1} | {2,4,1} | {2,2,2,1,2,2} |
26 | {9,1} | {2,5,1} | {1,3,3,2} |
27 | {5,1} | {2,3,2,3} | |
28 | {7,1} | {3,2,2,1,3} | |
29 | {4,1,2} | {2,2,1,2,2,2} | |
30 | {8,5,1} | {3,2,2,3} | |
31 | {1,10,1} | {1,4,3,4,1} | |
32 | {11,1} | {2,4,4,2,4} | |
33 | {4,3,2} | {1,3,3,2} | |
34 | {14,1} | {1,3,2} | |
35 | {9,1} | {3,2,3,3,2} | |
36 | {8,1} | {1,2,2,2,2,2,2,2,2,1,2} | |
37 | {4,1,2} | {2,1,1,2,2} | |
38 | {3,11,1} | {2,2,6,1} | {3,2,3,3,2} |
39 | {3,13,1} | {1,2,5,2} | {3,4,4,4,3,2} |
40 | {13,1} | {5,4,2,2} | {2,3,2,2,3,3,2,2} |
41 | {13,1} | {2,3,2} | {1,2,2,2,2,2,2,1,2,2,2} |
42 | {5,13,1} | {3,1,4,2,2,2} | {2,2,2,2,2,2,2,2} |
43 | {17,1} | {1,10,1} | {1,3,4,4,3,4,2} |
44 | {3,15,1} | {1,7,7,1} | {3,2,2,4,4,4,4,4,2,2} |
45 | {17,1} | {1,7,1} | {2,1,2,2,2,2,2,2,1,2,2} |
46 | {12,1} | {2,3,4,2} | {2,1,2,3,3,2,2} |
47 | {12,1} | {4,4,1,4,3,2} | |
48 | {9,9,1} | {3,1,5,4,5,5,2,4} | |
49 | {2,11,1} | {2,1,1,2} | |
50 | {7,7,1} | {2,3,3,2} | {2,2,2,2,1,2} |
51 | {9,3,2} | {3,2,2,3,3,2} | |
52 | {1,13,1} | {1,2,1,1,3,2} | {2,2,2,1,1,2,2} |
53 | {5,11,1} | {3,2,3,2} | |
54 | {13,1} | {2,3,2,3,2} | |
55 | {3,3,3} | ||
56 | {3,18,1} | {3,1,3,4,2} | |
57 | {1,37,1} | {5,1,4,2} | {1,4,4,2,4,2} |
58 | {1,6,2} | {1,1,2,2,2} | |
59 | {1,16,1} | {1,3,5,3,2} | {1,3,3,3,3,3,2} |
60 | {9,13,1} | {2,7,4,2} | {3,4,4,4,2} |
61 | {2,25,1} | {3,2,2,3,2} | {2,2,2,2,2,1,2,1,2,2,2} |
62 | {1,11,1} | {3,2,5,2} | {4,1,4,4,2} |
63 | {14,1} | {1,2,5,3,3} | {2,3,2,4,4,3} |
64 | {3,19,1} | {4,1,1,3} | {2,2,2,2,1,1,2} |
65 | {23,1} | {1,1,2,4,2} | {2,2,2,2,2,2,1,2,1,2,2} |
66 | {4,2,3} | {3,3,2,3,3,3} | |
67 | {14,1} | {4,3,5,2} | {2,3,4,3,2,4,2} |
68 | {1,19,1} | {4,1,2,2} | {3,3,2,2,2} |
69 | {5,17,1} | {2,5,2,2} | {3,3,2,3,2} |
70 | {3,26,1} | {4,3,2,4,2} | |
71 | {1,13,1} | {1,4,1,6,2} | {1,2,3,2,3,4,2} |
72 | {13,1} | {1,6,3,2} | {2,2,1,3,3,2,2} |
73 | {15,1} | {2,6,1,2} | {2,3,1,3,3,2,2} |
74 | {17,1} | {2,8,2} | {2,3,3,2,2,3,3} |
75 | {19,1} | {2,2,2,2,5,2} | {2,4,4,4,4,2} |
76 | {2,19,1} | {6,2,1,4,2} | {4,4,4,2,4 2} |
77 | {1,25,1} | {2,1,1,6,2} | {3,2,3 4,3,2} |
78 | {1,25,1} | {1,3,2,4,2} | |
79 | {4,21,1} | {4,1,2,5,4,2} | |
80 | {17,1} | {5,1,3,3} | {3,3,2,3,3} |
81 | {1,2} | ||
82 | {5,1,4} | {2,4,1,2} | {3,3,2,2} |
83 | {5,31,1} | {4,4,2,4} | |
84 | {4,30,1} | {1,2,2,5,2} | {3,1,3,4,4,2} |
85 | {3,20,1} | {2,1,2,2,2,2} | |
86 | {8,2,2} | {3,3,3,3,3,2,2} | |
87 | {7,21,1} | {3,1,2,4,2} | |
88 | {21,1} | {1,2,4,2} | {1,2,2,3,3,3,3,2} |
89 | {1,22,1} | {1,2,2,2,2,2} | |
90 | {19,1} | {3,4,2,2,2} | |
91 | {17,1} | {2,3,1,3,2,3} | |
92 | {7,21,1} | {1,1,3,3,3,3} | |
93 | {1,55,1} | {2,3,4,2,2} | |
94 | {5,2} | {3,1,3,2,3,2} | |
95 | {5,25,1} | {1,8,5,2} | {3,2,1,4,4,3,4,2} |
96 | {7,21,1} | {3,1,3,6,2} | {5,4,5,2} |
97 | {25,1} | {1,1,2,2} | |
98 | {1,25,1} | {2,4,2,4} | {2,3,3,2,3,3,3,2} |
99 | {21,1} | {2,5,4,2} | {2,3,3,3,3,3} |
Luke Pebody found that 2008{2,512,1}=2008 and 2008{5,1,7,7,6,7,3}=2008. Can anyone find a shorter list or one with a small sum? He claims no list using numbers smaller than 7 will work.
2. Here are the smallest known differences for n ≤ 24:
2n | k | Smallest Difference | Expression |
---|---|---|---|
4 | 1 | 4 | ( 23 ) – ( 41 ) |
6 | 1 | 1 | ( 15 + 26 ) – ( 43 ) |
8 | 1 | 16 | ( 16 + 27 + 83 ) – ( 54 ) |
2 | 9 | ( 27 + 83 ) – ( 54 + 61 ) | |
10 | 1 | 28 | ( 19 + 37 + 65 + 82 ) – ( 104 ) |
2 | –1 | ( 56 + 84 + 101 ) – ( 39 + 72 ) |
2n | k | Smallest Difference | Expression |
---|---|---|---|
12 | 1 | –157 | ( 311 + 57 + 94 + 101 + 122 ) – ( 86 ) |
2 | –2 | ( 211 + 39 + 105 + 121 ) – ( 76 + 84 ) | |
3 | –15 | ( 211 + 39 + 105 ) – ( 112 + 76 + 84 ) | |
14 | 1 | 2 | ( 214 + 411 + 78 + 105 + 121 + 133 ) – ( 69 ) |
2 | –1 | ( 111 + 314 + 59 + 122 + 134 ) – ( 78 + 106 ) | |
3 | 2 | ( 310 + 413 + 611 + 75 ) – ( 114 + 92 + 128 ) | |
16 | 1 | 444 | ( 112 + 215 + 314 + 410 + 511 + 137 + 166 ) – ( 89 ) |
2 | –26 | ( 105 + 114 + 131 + 143 + 152 + 169 ) – ( 76 + 812 ) | |
3 | 4 | ( 215 + 314 + 410 ) – ( 511 + 89 + 121 + 137 + 166 ) | |
4 | 17 | ( 112 + 215 + 314 + 410 ) – ( 511 + 89 + 137 + 166 ) | |
18 | 1 | 1386 | ( 116 + 214 + 315 + 410 + 611 + 127 + 139 + 175 ) – ( 188 ) |
2 | –93 | ( 412 + 711 + 135 + 148 + 151 + 166 + 173 ) – ( 218 + 910 ) | |
3 | –109 | ( 412 + 711 + 135 + 148 + 166 + 173 ) – ( 115 + 218 + 910 ) | |
4 | 5 | ( 109 + 112 + 137 + 151 + 176 ) – ( 318 + 414 + 128 + 165 ) | |
20 | 1 | –8736 | ( 314 + 812 + 116 + 151 + 169 + 177 + 182 + 195 + 204 ) – ( 1310 ) |
2 | 94 | ( 119 + 318 + 515 + 1110 + 139 + 162 + 174 + 207 ) – ( 812 + 146 ) | |
3 | 74 | ( 318 + 515 + 1110 + 139 + 162 + 174 + 207 ) – ( 812 + 146 + 191 ) | |
22 | 1 | 3278 | ( 122 + 221 + 319 + 420 + 138 + 149 + 156 + 167 + 1710 + 185 ) – ( 1112 ) |
2 | 3255 | ( 221 + 319 + 420 + 138 + 149 + 156 + 167 + 1710 + 185 ) – ( 1112 + 221) | |
3 | –24575 | ( 220 + 321 + 1211 + 151 + 169 + 188 + 196 + 225 ) – ( 417 + 714 + 1310 ) | |
24 | 1 | –5359 | ( 222 + 421 + 1311 + 1412 + 156 + 167 + 178 + 185 + 191 + 209 + 233 ) – ( 2410 ) |
2 | –5379 | ( 222 + 421 + 1311 + 1412 + 156 + 167 + 178 + 185 + 209 + 233 ) – ( 119 + 2410 ) |
3. Here are the smallest known results:
k \ n | 2 | 3 | 4 |
---|---|---|---|
2 | 132 = 169 142 = 196 | 53 = 125 83 = 512 | 44 = 256 54 = 625 |
3 | 132 = 169 142 = 196 312 = 961 | 3453 = 41063625 3843 = 56623104 4053 = 66430125 | 10014 = 1004006004001 10104 = 1040604010000 11004 = 1464100000000 |
4 | 1282 = 16384 1782 = 31684 1912 = 36481 1962 = 38416 | 10023 = 1006012008 10203 = 1061208000 20013 = 8012006001 20103 = 8120601000 | 100014 = 10004000600040001 100104 = 10040060040010000 101004 = 10406040100000000 110004 = 14641000000000000 |
5 | 1282 = 16384 1782 = 31684 1912 = 36481 1962 = 38416 2092 = 43681 | 50273 = 127035954683 70613 = 352045367981 72023 = 373559126408 82883 = 569310543872 83843 = 589323567104 | 186374 = 120643525773897361 228764 = 273854796251013376 247884 = 377542589207163136 270114 = 532307581397762641 275064 = 572413350873761296 |
6 | 1032 = 10609 1302 = 16900 1402 = 19600 2472 = 61009 3012 = 90601 3102 = 96100 | 112573 = 1426487591593 112723 = 1432197595648 151783 = 3496581419752 162313 = 4275981654391 168853 = 4813967954125 196543 = 7591941538264 | |
7 | 12802 = 1638400 17802 = 3168400 19102 = 3648100 19512 = 3806401 19602 = 3841600 20092 = 4036081 20902 = 4368100 | 233953 = 12804692354875 235723 = 13097526845248 249283 = 15490388426752 254293 = 16443257028589 258163 = 17205482538496 337393 = 38405782562419 349273 = 42607284155983 | |
8 | 10032 = 1006009 10302 = 1060900 13002 = 1690000 14002 = 1960000 24702 = 6100900 30012 = 9006001 30102 = 9060100 31002 = 9610000 |
k \ n | 5 | 6 |
---|---|---|
2 | 3485 = 5103830227968 3815 = 8028323765901 | 7316 = 152582336769287881 7646 = 198865822812737536 |
3 | 100015 = 100050010001000050001 100105 = 100501001000500100000 101005 = 105101005010000000000 | 100016 = 1000600150020001500060001 100106 = 1006015020015006001000000 101006 = 1061520150601000000000000 |
4 | 775775 = 2809732043385544072671657 822065 = 3754201540342892587063776 847445 = 4370637587630405589172224 883265 = 5375796440820402273185376 | 1000016 = 1000060001500020000150000600001 1000106 = 1000600150020001500060001000000 1001006 = 1006015020015006001000000000000 1010006 = 1061520150601000000000000000000 |
5 | 1143185 = 19524192871006530732473568 1154315 = 20493318522670793075846151 1164185 = 21384577307426399005121568 1331225 = 41807015820653779495321632 1412135 = 56153056098471782041237293 |
Jeremy Galvagni noted that these are too easy if we allow 1, or repeats of terms.
4. Here are the known exponent switch equations with 5 or fewer terms on each side:
24 = 42 |
25 + 27 + 29 + 53 + 54 = 52 + 72 + 92 + 35 + 45 |
25 + 26 + 27 + 45 + 63 = 52 + 62 + 72 + 54 + 36 |
23 + 27 + 36 + 54 + 82 = 32 + 72 + 63 + 45 + 28 |
25 + 26 + 211 + 53 + 73 = 52 + 62 + 112 + 35 + 37 |
23 + 29 + 211 + 63 + 73 = 32 + 92 + 112 + 36 + 37 |
45 + 46 + 73 + 92 + 102 = 54 + 64 + 37 + 29 + 210 |
26 + 210 + 211 + 64 + 72 = 62 + 102 + 112 + 46 + 27 |
23 + 28 + 43 + 56 + 132 = 32 + 82 + 34 + 65 + 213 |
28 + 310 + 45 + 46 + 84 = 82 + 103 + 54 + 64 + 48 |
212 + 216 + 46 + 74 + 103 = 122 + 162 + 64 + 47 + 310 |
25 + 216 + 43 + 75 + 122 = 52 + 162 + 34 + 57 + 212 |
29 + 212 + 220 + 74 + 104 = 92 + 122 + 202 + 47 + 410 |
Dean Hickerson asked what is the smallest K so that there are infinitely many exponent switch equations with K or fewer terms on each side? And then he noted that K ≤ 20 since:
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 7/29/08.