Problem of the Month (June 2011)
The matrix below has the property that, ignoring spaces, every row and column is a power of 2.
What is the smallest symmetric matrix of digits and spaces that contains a row of bn where every row and column is some power of b? (Here "smallest" means fewest entries, or smallest sum of powers for the same sized matrices.) What if the matrices do not need to be symmetric? What if the matrices are not allowed to use any power of b more than once?
We can ask the same question of any sequence of numbers that grows at least exponentially. What about Fibonacci numbers? What about factorials?
Are there non-trivial matrices where every row is a power of b and every column is a power of c? (The trivial examples are 1×1 matrices, when b is a power of c, or "disconnected" matrices that are a combination of smaller results.)
ANSWERS
Solvers this month include Joe DeVincentis, Bryce Herdt, Jon Palin, and Berend van der Zwaag.
Joe DeVincentis pointed out that there are many powers that use only two digits, such as 816192 = 6661661161, but here we only consider small bases.
Jon Palin proved that there are solutions for all Fibonacci numbers, factorials, and powers of 2, 3, 4, and 5. Bryce Herdt proved it for all powers of 6. Berend van der Zwaag proved it for powers of 8, 11, 12, 16, and 21. Joe DeVincentis proved it for powers of 51.
Joe DeVincentis conjectured that there are no other solutions for powers of 7 and 9, but was not quite able to prove this.
Here are the best-known solutions for symmetric matrices:
Powers of 2
1
| 2
| 4
| 8
| 16
| 32
| 64
| 128
| 256
| 512
| 1024
| 2048
| 4096
| 8192
| 16384 (JP)
| 32768
|
65536
| 131072 (BH)
| | | | 1 | | | |
| | | | | 3 | | | | 2
| | | | | 1 | | | |
| | | | 1 | 0 | | 2 | 4 |
| 1 | 3 | 1 | 0 | 7 | 2 | | |
| | | | | 2 | | | |
| | | | 2 | | | | |
| | | | 4 | | | | |
| | 2 | | | | | | |
| |
| 262144 (BH)
| 524288 (BH)
| 1048576 (JD)
1
1 0 24
4
8
25 6
1048576
64
6 4
2
4 |
| 2097152 (JD)
8
2
10 24
8 1 9 2
2097152
1
25 6
2
2
4 |
| 4194304 (JD)
1
4
1
4194304
4
3 2
1 0 24
4 |
| 8388608 (BZ)
| 16777216 (BZ)
3 2
32
12 8
16
16777216
32 7 6 8
32 768
2
1
6 4
8
8
2 |
|
33554432 (BZ)
3 2
33554432
51 2
25 6
4
4
32
2 |
| 67108864 (BZ)
1
16
67108864
1
1 0 2 4
8
8
6 4
4 |
| 134217728 (BZ)
3 2
1
32
4
2
1
134217728
3 2 76 8
2
8
8
2 |
| 268435456 (BH)
2
1 6
8
4
3 2
268435456
4
25 6
6 4
|
| 536870912 (BZ)
8
5 1 2
3 2
64
8
536870912
4 09 6
81 9 2
16
2
2
2
|
| 1073741824 (BH)
3 2
1
10 2 4
1073741824
3 2
3 27 6 8
4
128
8
2
4
4
2 |
| 2147483648 (BZ)
2
1
4
2147483648
4
8
3 2
6 4
4
8
|
| 4294967296 (BH)
4
1 2 8
1
819 2
4
8 1 9 2
1 6
42 94967296
2
81 9 2
6 4
2
2
|
|
8589934592 (BZ)
8
1 2 8
5 1 2
2 048
409 6
8589934592
32
64
5 12
8 1 9 2
2
2 |
| 17179869184 (BZ)
1
3 27 68
5 12
3 2 76 8
81 92
12 8
2 56
17179869184
262 14 4
8
6 4
8
8
4 |
| 34359738368 (BZ)
1 28
3
5 12
34359738368
4
3 2
2 5 6
8 19 2
327 6 8
3 2
8
3 2
6 4
8
|
| 68719476736 (BZ)
4
1 6
1 63 8 4
13 1 07 2
1
4 0 9 6
6 4
131 0 7 2
1
4 0 96
6871947 6736
32
6 4
2 6 21 44
4
|
| 137438953472 (BZ)
4
3 2
1 0 2 4
3 2
137438953472
4
3 2
8
4 0 9 6
25 6
3 2
4
32 7 6 8
2
2
4
|
| 274877906944 (BZ)
1
32
327 68
1
4
8
3 2 7 6 8
32 7 6 8
27 4877906 944
1 02 4
6 4
6 4
81 9 2
64
6 4
8
8 |
| 549755813888 (BH)
512
4
819 2
1
549 7 55813888
1
2 5 6
2 5 6
8
1
3 2
8
8
8
|
|
Powers of 3
1
| 3
| 9
| 27
| 81
| 243 (JP)
| 729
| 2187
| 6561 (BH)
| | | | | 1 | | |
| | | | | | 9 | | |
| | | | 1 | | | | |
| | | 1 | 9 | 6 | | 8 | 3 |
| | | | 6 | 5 | 6 | 1 | |
| 1 | 9 | | | 6 | 8 | | | 3
| | | | 8 | 1 | | | |
| | | | 3 | | | | |
| | | | | | 3 | | |
| |
| 19683 (JD)
|
59049 (JD)
| | | | | | 1 | | | |
| | | | | | | 9 | | | |
| | | 7 | | | | | 2 | | | 9
| | | | 6 | | 5 | 6 | | | 1 |
| | | | | | 9 | | | | |
| | | | 5 | 9 | 0 | | 4 | 9 | |
| 1 | 9 | | 6 | | | 8 | 3 | | |
| | | 2 | | | 4 | 3 | | | |
| | | | | | 9 | | | | |
| | | | 1 | | | | | | |
| | | 9 | | | | | | | |
| |
| 177147 (JD)
| 531441 (BZ)
2 7
2 7
531441
3
1
24 3
2 4 3
1
7 29
7 29
9 |
| 1594323 (BH)
2 7
1
1594323
9
2 4 3
3
7 2 9
3 |
| 4782969 (BZ)
2 4 3
2 7
8 1
7 2 9
9
4782969
9
9
1
3 |
| 14348907 (BZ)
1
2 4 3
3
2 4 3
8 1
9
14348907
729
9
1
3
3 |
|
Powers of 4
1
| 4
| 16
| 64
| 256
| 1024
| 4096
| | 4 | | | | | | 1 | 0 | | 2 | | 4 | 4 | 0 | 9 | 6 | | | | | | 6 | 4 | | | | | 2 | | | 5 | 6 | | | | | | 6 | 4 | | | 4 | | | | | |
|
| 16384 (JD)
|
65536 (JD)
| 262144 (JD)
| 1048576 (BZ)
1
1 02 4
2 5 6
6 4
1 63 8 4
2 5 6
10 48576
25 6
6 4
6 4
4 |
| 4194304 (BZ)
4
1
4
1
4 0 9 6
4
4194304
1 02 4
6 4
4 |
| 16777216 (BZ)
1
16
16
16
16777 2 16
16 777 2 16
16 7772 16
2 56
2 56
2 56
16
16
16
6 4 |
|
Powers of 5
1
| 5
| 25
| 125
| 625
| 3125
| 15625
| 78125 (JD)
9 | 7 | | 6 | 5 | 6 | 2 | 5
| 7 | 8 | 1 | | | 2 | 5 |
| | 1 | | | | | |
| 6 | | | 2 | | 5 | |
| 5 | | | | | | |
| 6 | 2 | | 5 | | | |
| 2 | 5 | | | | | |
| 5 | | | | | | |
| |
| 390625 (BZ)
31 25
1 953125
1
39 062 5
15 625
3125
1
2 5
25
5
|
| 1953125 (JD)
| 1 | | | | | | 1 | 9 | 5 | 3 | 1 | 2 | 5 | | 5 | | | | | | | 3 | | 1 | 2 | 5 | | | 1 | | 2 | 5 | | | | 2 | | 5 | | | | | 5 | | | | | |
|
| 9765625 (JD)
9 | 7 | | 6 | 5 | 6 | 2 | 5
| 7 | 8 | 1 | | | 2 | 5 |
| | 1 | | | | | |
| 6 | | | 2 | | 5 | |
| 5 | | | | | | |
| 6 | 2 | | 5 | | | |
| 2 | 5 | | | | | |
| 5 | | | | | | |
| |
|
48828125 (JD)
9 765 625
9 7 65 625
9 7 65 625
488 2 8 125
78 1 25
7 8 1 2 5
6 25
5
6 2 5
5
7 81 2 5
6 25
5
125
625
625
625
25
5
|
| 244140625 (BZ)
31 25
1 95 3 125
2 44 14 06 25
62 5
4 88 2 8 125
4 88 28 125
2 5
2 5
1 2 5
4 882 8125
1
3906 2 5
1562 5
1
3 125
25
5
125
25
25
5 |
| 1220703125 (JD)
3 12 5
1 9 5312 5
2 5
2 5
1220703 125
78 1 25
39 0 62 5
3125
5
3 125
1 25
12 5
2 5
5
5
5 |
| 6103515625 (BZ)
6 2 5
1
6103515625
31 25
5
1
2 5
62 5
25
5
5 |
|
Powers of 6
1
| 6
| 36
| 216
| 1296
| 7776
| 46656 (BH)
77 7 6
77 7 6
6
60 466176
6
6
4665 6
6
6
1
77 7 6
6
6
6 |
| 279936 (JD)
| | | 2 | 1 | | | | 6 | | |
| | | | | 2 | 1 | | | | 6 | |
| | | | | | 2 | | | | | 1 | 6
| 2 | | | 7 | 9 | 9 | 3 | 6 | | | |
| 1 | 2 | | 9 | 6 | | | | | | |
| | 1 | 2 | 9 | | 6 | | | | | |
| | | | 3 | | | 6 | | | | |
| | | | 6 | | | | | | | |
| 6 | | | | | | | | | | |
| | 6 | | | | | | | | | |
| | | 1 | | | | | | | | |
| | | 6 | | | | | | | | |
| |
|
1679616 (BH)
1
7776
777 6
77 7 6
16 79616
6
1
6
6
6
|
| 10077696 (BZ)
1
2 1 6
60 46617 6
10077 6 96
777 6
777 6
1
46 6 5 6
6
6
1
16796 16
6
6 |
| 60466176 (BH)
77 7 6
77 7 6
6
60 466176
6
6
4665 6
6
6
1
77 7 6
6
6
6 |
| 362797056 (BZ)
1
3 6
2 1 6
2 1 6
7 7 7 6
1 2 9 6
7 7 7 6
1 00 77696
36279705 6
1
7 77 6
7 7 76
6
1 679616
6
6
6
6
6 |
| 2176782336 (BZ)
21 6
1
7 77 6
6
7 77 6
2176782336
1 29 6
3 6
36
6
6
6
6 |
|
Powers of 7
Powers of 8
1
| 8
| 64 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
| 512 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
| 4096 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
| 32768 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
|
262144 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
| 2097152 (JD)
51 2
5 1 2
6 4
4 0 9 6
40 9 6
16 7 7 7 216
6 4
2 097 1 5 2
5 12
8
1
5 49 7 55813 888
1
1
2 6 21 4 4
26 2 144
1
6 4
6 4
8
8
8 |
| 16777216 (JD)
51 2
5 1 2
6 4
4 0 9 6
40 9 6
16 7 7 7 216
6 4
2 097 1 5 2
5 12
8
1
5 49 7 55813 888
1
1
2 6 21 4 4
26 2 144
1
6 4
6 4
8
8
8 |
| 134217728 ?
| 1073741824 ?
|
8589934592 (JD)
5 1 2
6 4
6 4
4 0 9 6
6 4
6 4
6 4
8
5 1 2
8
4 0 9 6
4 0 9 6
5 49 75581 3 888
5 1 2
512
8
1
1
6 4
51 2
4 09 6
858993 4592
2 6 2 1 4 4
1
1
2 6 2 144
6 4
6 4
8
8
8
|
| 68719476736 (JD)
5 1 2
6 4
6 4
409 6
409 6
409 6
409 6
54 9 755813 8 88
5 1 2
5 1 2
8
1
3 2 7 6 8
1
68 719476736
6 4
1 6 7 7 7 2 1 6
6 4
1 6 7 7 721 6
3 27 6 8
2 6 2 1 44
6 4
2 6 2 14 4
6 4
6 4
8
8
8
8 |
| 549755813888 (JD)
64
5 12
6 4
4 09 6
549755813888
51 2
5 1 2
8
1
3 2 7 68
8
8
8
1
6 4
8
1
2 6 2 14 4 |
|
Powers of 9
Powers of 10
1 (JD)
| 10 (JD)
| 100 (JD)
| 1000 (BH)
| 10000 (BH)
| Clearly this trend continues.
|
Powers of 11
1 (JD)
| 11 (JD)
| 121 (JD)
| 1331 (JD)
| 14641 (BZ)
11
1 21
1 1
14 6 4 1
11
13 3 1
1 61 0 5 1
1948717 1
1 94 8717 1
1 4 6 4 1
214 3588 8 1
1 77 1 56 1
11
1 77 15 6 1
1 4 6 41
1 1
1 1
1 1
1 |
| 161051 (BZ)
11
1 21
1 1
14 6 4 1
11
13 3 1
1 61 0 5 1
1948717 1
1 94 8717 1
1 4 6 4 1
214 3588 8 1
1 77 1 56 1
11
1 77 15 6 1
1 4 6 41
1 1
1 1
1 1
1 |
| 1771561 (BZ)
11
1 21
1 1
14 6 4 1
11
13 3 1
1 61 0 5 1
1948717 1
1 94 8717 1
1 4 6 4 1
214 3588 8 1
1 77 1 56 1
11
1 77 15 6 1
1 4 6 41
1 1
1 1
1 1
1 |
| 19487171 (BZ)
11
1 21
1 1
14 6 4 1
11
13 3 1
1 61 0 5 1
1948717 1
1 94 8717 1
1 4 6 4 1
214 3588 8 1
1 77 1 56 1
11
1 77 15 6 1
1 4 6 41
1 1
1 1
1 1
1 |
| 214358881 (BZ)
11
1 21
1 1
14 6 4 1
11
13 3 1
1 61 0 5 1
1948717 1
1 94 8717 1
1 4 6 4 1
214 3588 8 1
1 77 1 56 1
11
1 77 15 6 1
1 4 6 41
1 1
1 1
1 1
1 |
|
Powers of 12
1 (JP)
| 12 (JP)
| 144 (JP)
| 1728 (BZ)
1
1
1
1 2
14 4
1728
1 72 8
1 2
2488 32
1 2 |
| 20736 (BZ)
1
1
1
1 2
1 2
1 4 4
1 72 8
14 4
1 7 2 8
14 4
1 7 2 8
1 7 28
248 83 2
3583180 8
1 7 2 8
248 8 3 2
1 7 28
248 8 32
20 736
1 2
1 2
2 4 8 8 32
1 2 |
| 248832 (BZ)
1
1
1
1 2
14 4
1728
1 72 8
1 2
2488 32
1 2 |
| 2985984 (BZ)
1
1
1
1
1 2
1 2
1 4 4
1 2
1 2
1 4 4
1 2
1 2
1 2
1 4 4
248 8 3 2
2 9 8 5 9 8 4
1 728
2 4 8 8 3 2
1 728
24 8 8 3 2
1 7 2 8
1 2
35831 8 0 8
358 3180 8
29 859 8 4
1 72 8
1 2
2 4 8 8 3 2
1 7 2 8
24 88 32
2 0 736
1 2
1 2
1 4 4
2 4 8 8 32
1 2 |
| 35831808 (BZ)
1
1
1
1 2
1 2
1 4 4
1 72 8
14 4
1 7 2 8
14 4
1 7 2 8
1 7 28
248 83 2
3583180 8
1 7 2 8
248 8 3 2
1 7 28
248 8 32
20 736
1 2
1 2
2 4 8 8 32
1 2 |
|
Powers of 15
Powers of 16
1 (JP)
| 16 (JP)
| 256 (JP)
1
1
1
1 6
25 6
2 5 6
65536
1 6
1 6
1 6 |
| 65536 (JP)
1
1
1
1 6
25 6
2 5 6
65536
1 6
1 6
1 6 |
| 1048576 ?
| 16777216 (JD)
1
1
16
16
16
16777 2 16
16 777 2 16
16 7772 16
2 56
2 56
2 56
16
16
16
1 6 |
|
Powers of 21
1 (JD)
| 21 (JD)
| 441 (JD)
| 9261 (JD)
1
1
1 944 8 1
44 1
4 4 1
4 08 4 1 0 1
1
4 0 8 4 1 0 1
19448 1
4 4 1
4 4 1
1 9 448 1
1 9448 1
2 1
9261
44 1
441
1 8 010 88 541
4 41
1
1
1
1
1
1
1
1 |
| 194481 (JD)
1
1
1 944 8 1
44 1
4 4 1
4 08 4 1 0 1
1
4 0 8 4 1 0 1
19448 1
4 4 1
4 4 1
1 9448 1
1 9 448 1
441
44 1
1 8 010 88 541
4 41
1
1
1
1
1
1
1
1 |
| 4084101 (JD)
1
1
1 944 8 1
44 1
4 4 1
4 08 4 1 0 1
1
4 0 8 4 1 0 1
19448 1
4 4 1
4 4 1
1 9448 1
1 9 448 1
441
44 1
1 8 010 88 541
4 41
1
1
1
1
1
1
1
1 |
|
85766121 (JD)
1
1
1 9 4481
4 4 1
4 4 1
4 4 1
408 41 0 1
1944 8 1
4 0 8 4 1 0 1
4 0 8 4 1 0 1
1 9448 1
4 41
4 4 1
1 8 01088 5 4 1
1 94 4 8 1
2 1
1 9 4 4 8 1
44 1
2 1
8 5 76612 1
9 26 1
92 6 1
4 4 1
2 1
44 1
4 4 1
1
1
4 0 84 1 01
4 0 8 41 01
4 4 1
1
1
1
1
1
1
1
1
1
1
1 |
| 1801088541 (JD)
1
1
1 944 8 1
44 1
4 4 1
4 08 4 1 0 1
1
4 0 8 4 1 0 1
19448 1
4 4 1
4 4 1
1 9448 1
1 9 448 1
441
44 1
1 8 010 88 541
4 41
1
1
1
1
1
1
1
1 |
|
Powers of 38
Powers of 51
1 (JD)
| 51 (JD)
| 2601 (JD)
13 2 6 51
13 26 51
3 45 02 52 51
5 1
132 65 1
2 6 01
2 60 1
260 1
2 60 1
51
1 3 2 651
6 765 2 01
2601
51
1 3265 1
2601
2 601
51
5 1
2 60 1
51
5 1
51
51
1 |
| 132651 (JD)
13 2 6 51
13 26 51
3 45 02 52 51
5 1
132 65 1
2 6 01
2 60 1
260 1
2 60 1
51
1 3 2 651
6 765 2 01
2601
51
1 3265 1
2601
2 601
51
5 1
2 60 1
51
5 1
51
51
1 |
| 6765201 (JD)
13 2 6 51
13 26 51
3 45 02 52 51
5 1
132 65 1
2 6 01
2 60 1
260 1
2 60 1
51
1 3 2 651
6 765 2 01
2601
51
1 3265 1
2601
2 601
51
5 1
2 60 1
51
5 1
51
51
1 |
| 345025251 (JD)
13 2 6 51
13 26 51
3 45 02 52 51
5 1
132 65 1
2 6 01
2 60 1
260 1
2 60 1
51
1 3 2 651
6 765 2 01
2601
51
1 3265 1
2601
2 601
51
5 1
2 60 1
51
5 1
51
51
1 |
|
Fibonacci Numbers
1
| 2
| 3
| 5
| 8
| 13
| 21 (BH)
| 34
| 55
| 89
| 144
| 233
| 377 (BH)
| 610 (BH)
| 987
| 1597 (BH)
|
2584
| 4181
| 6765
| 10946 (BH)
| 17711 (JD)
| 28657
| 46368
| 75025 (JP)
| 121393 (JP)
| 196418 (JP)
|
317811 (JP)
| 514229 (JP)
| 832040 (BH)
| 1346269 (BZ)
1
3
14 4
1346269
233
46368
9 87 |
| 2178309 (BZ)
8
2 1
1
2178309
8 9
3 4
1 0946
8 9 |
| 3524578 (JP)
| 5702887 (JP)
| | | | | | | 3
| | | | 5 | | | |
| | | 3 | 7 | | | | 7
| | 5 | 7 | 0 | 2 | 8 | 8 | 7
| | | | 2 | | | |
| | | | 8 | | | |
| | | | 8 | | | |
| 3 | | 7 | 7 | | | |
| |
| 9227465 (BZ)
8 9
233
9227465
37 7
34
67 65
5 5 |
| 14930352
1
3 4
8 9
3
61 0
1
3
5
14930 352 |
| 24157817
2
3 4
1
5
3 7 7
8
1
24157817 |
|
Factorials
1
| 2
| 6
| 24
| 120
| 720
| 5040
| | | | | | | | 1 | | | | | | | | | 2 | | | | | | | | 2 | | | | | | | | 1 | | | | | | | | | 2 | | | | | | | | 5 | 0 | 4 | 0 | | | | 1 | 2 | 0 | | | | | | 2 | | | 4 | | | | 1 | 2 | | | | 0 | | | |
|
| 40320
| | | | | | | 1 | | | | | | | | 2 | | | | | 1 | | | | | | | 2 | | 4 | | | | | 1 | | 2 | 0 | | | | | | 4 | 0 | 3 | 2 | 0 | | | | | | 2 | 4 | | 1 | 2 | | | | 0 | | |
|
| 362880 (BH)
1
1
2
2
1
1
2 4
40 3 2 0
40 3 2 0
6
6
2
2
3 6 288 0
3 6 2 880
1 2 0
1 2 0
1 2 0
1 2 0
|
|
3628800 (JD)
1
2
1
2
1
2
1
1
2 4
40 3 2 0
40 3 2 0
6
6
2
2
3 6 288 0
3 6 2 8800
1 2 0
1 2 0
12 0
12 0
12 0
|
| 39916800 (BZ)
1
2
1
2
1
2
1
2
1
2
1
1
2 4
40 3 2 0
6
4 0 3 2 0
40 3 2 0
399 1 68 00
3 991 6 800
1
1
6
6
36 288 0
1 2 0
1 2 0
12 0
12 0
12 0
12 0
12 0
|
| 479001600 (BZ)
1
2
1
2
1
2
1
2
1
2 4
72 0
479001600
1 20
12 0
1
6
12 0
12 0
12 0
|
| 622702800
1
2
1
2
1
6
2
2
72 0
12 0
2
2
62270 2800
1 2 0
12 0
12 0
|
|
Mersenne Primes
3 (JD)
| 7 (JD)
| 31 (JD)
| 127 (JD)
| 131071 (JD)
|
Here are the best-known solutions for non-symmetric matrices when they are smaller:
Powers of 2
Powers of 4
Powers of 5
Powers of 11
Fibonacci Numbers
13
| 21
| 55
| 144 (BH)
| 233
| 2584
| 4181
| 17711 (BH)
|
Here are the best-known solutions for matrices that are not allowed to repeat a row or column:
Powers of 2
Powers of 4
Fibonacci Numbers
1, 3, 13
| 2, 21
| 144 (BH)
| 233
| 5, 8, 34, 2584
| 55 (BH)
| 4181
|
Joe DeVincentis proved that 5 does not have any solutions with even bases.
Here are the best-known solutions for matrices whose rows are powers of b and whose columns are powers of c:
Powers of 2 and 3
Powers of 2 and 6
(JD)
| (BH)
| (BH)
| (JD)
1
1
1
1
1
1
1
6
6
6
777 6
777 6
777 6
216
216
216
6
1
6
|
|
Powers of 2 and 9
Powers of 2 and 11
(JD)
| (JD)
| (JD)
| (BH)
1
1 21
16105 1
1 2 1
1 46 41 |
|
Powers of 2 and 12
(JD)
| (JD)
| (BH)
1
24883 2
1
358318 0 8
20 736
1 2
1 2
1 4 4
1 2
1 2
1 2
|
| (JD)
|
1
35831808
1 2
1 2
1 2
1 2
1 4 4 |
|
Powers of 2 and 21
(BH)
| (BH)
| (BH)
1
1
4084101
2 1
2 1
4 4 1 |
|
Powers of 2 and 38
Powers of 3 and 8
Powers of 3 and 11
(JD)
| (JD)
1 2 1
1 2 1
1 2 1
19487171
1 3 31
1 |
| (JD)
12 1
1 2 1
1 77 1 561
121
121
121
1 9 4 8 7 1 7 1
1 3 31
16105 1
12 1
1 2 1
1 77 1 5 6 1
121
1 4 6 4 1
121
1 21
1 21
1 9 4 87 1 7 1
1 3 3 1
|
|
Powers of 4 and 38
Powers of 5 and 15
Powers of 4 and 6
(JD)
| (BH)
| (JD)
1
1
1
1
1
1
1
6
6
6
777 6
777 6
777 6
216
216
216
6
1
6
|
|
Powers of 8 and 9
Powers of 11 and anything
Powers of 12 and 38
Powers of 21 and 38
If you can extend any of these results, please
e-mail me.
Click here to go back to Math Magic. Last updated 8/6/13.