A polycube is a solid made from gluing unit cubes together along their faces. If S is a set of positive integers, we call a polycube P a S-faced polycube if S is the set of areas of the faces of P. What is the smallest (in terms of volume) S-faced polycube for various S?
When S={n}, solutions are known for for all n except n = 2 and n = 3. Can you find a solution for one of these values of n? Can you prove they don't exist? Can you find smaller solutions for the other values of n?
Solutions are known for all S={m,n}. Can you improve any of the best known solutions? Is every S={m,n,p} possible?
Given two particular polyominoes, is there a polycube that only has those two faces?
If there are an equal number n of faces with each area in S, we call P a balanced S-faced polycube. What balanced polycubes exist? In particular, what is the smallest k or the smallest n for which a {1,2,3,...k}n balanced polycube exists?
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
![]() 1 | none (Joe DeVincentis) | ? | ![]() 8 | ![]() 25 (George Sicherman) | ![]() 288 (George Sicherman) |
7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|
![]() 245 (Bryce Herdt) | ![]() 64 | ![]() 27 | ![]() 500 (Bryce Herdt) | ![]() 121 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|
![]() 144 | ![]() 169 | ![]() 196 | ![]() 225 | ![]() 64 | ![]() 289 | ![]() 324 | ![]() 361 | ![]() 200 |
m \ n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
2 | ![]() 2 | ||||||||
3 | ![]() 3 | ![]() 13 (George Sicherman) | |||||||
4 | ![]() 4 | ![]() 4 | ![]() 15 (George Sicherman) | ||||||
5 | ![]() 5 | ![]() 10 | ![]() 12 | ![]() 20 | |||||
6 | ![]() 6 | ![]() 12 | ![]() 9 | ![]() 12 | ![]() 30 | ||||
7 | ![]() 7 | ![]() 28 (George Sicherman) | ![]() 24 (George Sicherman) | ![]() 36 (Bryce Herdt) | ![]() 18 | ![]() 72 (George Sicherman) | |||
8 | ![]() 8 | ![]() 16 | ![]() 21 (George Sicherman) | ![]() 16 | ![]() 40 | ![]() 48 | ![]() 48 (George Sicherman) | ||
9 | ![]() 9 | ![]() 18 | ![]() 9 | ![]() 32 (Bryce Herdt) | ![]() 45 | ![]() 18 | ![]() 24 | ![]() 53 (George Sicherman) | |
10 | ![]() 10 | ![]() 20 | ![]() 33 (George Sicherman) | ![]() 20 | ![]() 25 (George Sicherman) | ![]() 40 (Bryce Herdt) | ![]() 91 | ![]() 80 | ![]() 90 |
We can also ask for solutions that have the same number of faces with area m and n.
m \ n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
2 | ![]() 10 (George Sicherman) | ||||
3 | ![]() 6 (George Sicherman) | ![]() 18 (George Sicherman) | |||
4 | ![]() 30 (Bryce Herdt) | ![]() 24 (Bryce Herdt) | ![]() 15 (George Sicherman) | ||
5 | ![]() 28 (Bryce Herdt) | ![]() 164 (George Sicherman) | ![]() 12 | ![]() 108 (George Sicherman) | |
6 | ![]() 42 (Bryce Herdt) | ![]() 12 (George Sicherman) | ![]() 18 (George Sicherman) | ![]() 24 | ![]() 365 (George Sicherman) |
7 | ![]() 48 (Bryce Herdt) | ![]() 469 (George Sicherman) | ![]() 126 (Bryce Herdt) | ![]() 253 (George Sicherman) | ![]() 18 |
8 | ![]() 25 (Bryce Herdt) | ![]() 208 (Bryce Herdt) | ![]() 115 (Bryce Herdt) | ![]() 32 (Bryce Herdt) | ![]() 323 (George Sicherman) |
9 | ![]() 26 (Bryce Herdt) | ![]() 379 (George Sicherman) | ![]() 90 (Bryce Herdt) | ![]() 131 (George Sicherman) | ![]() 46 |
10 | ![]() 62 (George Sicherman) | ![]() 276 (George Sicherman) | ![]() 280 (Bryce Herdt) | ![]() 156 (George Sicherman) | ![]() 50 (George Sicherman) |
m \ n | 6 | 7 | 8 | 9 |
---|---|---|---|---|
7 | ![]() 319 (George Sicherman) | |||
8 | ![]() 436 (George Sicherman) | ![]() 412 (Bryce Herdt) | ||
9 | ![]() 198 (Bryce Herdt) | ![]() 24 | ![]() 53 (George Sicherman) | |
10 | ![]() 224 (George Sicherman) | ![]() 476 (George Sicherman) | ![]() 584 (Bryce Herdt) | ![]() 684 (Bryce Herdt) |
m \ n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|
3 | ![]() 3 (GS) | |||||||
4 | ![]() 4 (GS) | ![]() 4 (GS) | ||||||
5 | ![]() 5 (GS) | ![]() 6 (GS) | ![]() 8 (GS) | |||||
6 | ![]() 6 (GS) | ![]() 6 (GS) | ![]() 7 (GS) | ![]() 10 (GS) | ||||
7 | ![]() 7 (GS) | ![]() 7 (GS) | ![]() 8 (GS) | ![]() 7 (GS) | ![]() 11 (GS) | |||
8 | ![]() 8 | ![]() 8 | ![]() 8 | ![]() 9 (GS) | ![]() 9 | ![]() 11 (GS) | ||
9 | ![]() 9 | ![]() 9 | ![]() 9 | ![]() 9 | ![]() 10 (GS) | ![]() 10 | ![]() 13 (GS) | |
10 | ![]() 10 (GS) | ![]() 10 (GS) | ![]() 10 (GS) | ![]() 10 (GS) | ![]() 10 (GS) | ![]() 10 (GS) | ![]() 11 (GS) | ![]() 14 (GS) |
m \ n | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
4 | ![]() 6 (GS) | ||||||
5 | ![]() 8 (GS) | ![]() 10 (GS) | |||||
6 | ![]() 6 (GS) | ![]() 8 (GS) | ![]() 18 (GS) | ||||
7 | ![]() 13 (GS) | ![]() 14 (GS) | ![]() 12 (GS) | ![]() 14 (GS) | |||
8 | ![]() 16 (GS) | ![]() 8 | ![]() 29 (BH) | ![]() 16 | ![]() 28 (GS) | ||
9 | ![]() 14 (GS) | ![]() 18 (BH) | ![]() 19 (BH) | ![]() 18 (GS) | ![]() 16 (GS) | ![]() 18 (BH) | |
10 | ![]() 16 (GS) | ![]() 16 (GS) | ![]() 10 (GS) | ![]() 12 (GS) | ![]() 14 (GS) | ![]() 20 (GS) | ![]() 18 (GS) |
m \ n | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
5 | ![]() 17 (BH) | |||||
6 | ![]() 12 (GS) | ![]() 15 (GS) | ||||
7 | ![]() 19 (BH) | ![]() 14 (GS) | ![]() 21 | |||
8 | ![]() 12 (GS) | ![]() 20 (GS) | ![]() 24 | ![]() 42 (GS) | ||
9 | ![]() 12 (GS) | ![]() 18 (BH) | ![]() 18 | ![]() 18 (BH) | ![]() 18 (BH) | |
10 | ![]() 22 (BH) | ![]() 15 (BH) | ![]() 30 (GS) | ![]() 30 (BH) | ![]() 27 (BH) | ![]() 30 (GS) |
m \ n | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|
6 | ![]() 24 (GS) | ||||
7 | ![]() 25 (BH) | ![]() 42 (GS) | |||
8 | ![]() 20 | ![]() 24 | ![]() 28 | ||
9 | ![]() 19 (GS) | ![]() 30 (GS) | ![]() 44 (BH) | ![]() 32 (GS) | |
10 | ![]() 20 (BH) | ![]() 24 (GS) | ![]() 40 (BH) | ![]() 32 (GS) | ![]() 40 (BH) |
m \ n | 6 | 7 | 8 | 9 |
---|---|---|---|---|
7 | ![]() 34 (BH) | |||
8 | ![]() 58 (GS) | ![]() 60 (BH) | ||
9 | ![]() 36 (GS) | ![]() 20 (BH) | ![]() 59 (BH) | |
10 | ![]() 30 (BH) | ![]() 35 (BH) | ![]() 40 (BH) | ![]() 45 (BH) |
m \ n | 7 | 8 | 9 |
---|---|---|---|
8 | ![]() 40 (BH) | ||
9 | ![]() 36 (GS) | ![]() 36 (GS) | |
10 | ![]() 54 (BH) | ![]() 32 (BH) | ![]() 60 (GS) |
{7,8,9} | {7,8,10} | {7,9,10} | {8,9,10} |
---|---|---|---|
![]() 46 (BH) | ![]() 112 (GS) | ![]() 119 (BH) | ![]() 52 (BH) |
Bryce Herdt managed to prove that all triples {m,n,p} have a solution. Then, in 2021, Bryce Herdt and George Sicherman proved that any set of two or more positive integers is the set of different areas of the faces of some polycube!
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() 2 (GS) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ![]() 3 (GS) | ?
![]() ![]() 4 (GS) ![]() 13 (GS) ?
| ![]() ![]() 4 (GS) ?
| ?
| ?
| ![]() ?
| ![]() 16 ?
| ?
| ?
| ![]() ![]() 48 (GS) ![]() 4 (GS) ?
| ![]() 15 (GS) ?
| ![]() 24 (GS) ![]() ![]() 5 (GS) ![]() 20 (GS) ![]() 15 (GS) ?
| ?
| ?
| ?
| ![]() ![]() 8 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 5 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 30 (GS) ?
| ![]() 18 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 14 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 38 (BH) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 14 (GS) ?
| ?
| ![]() 12 ?
| ?
| ![]() 30 (GS) ?
| ?
| ![]() ![]() 9 (GS) ![]() 36 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ![]() 5 (GS) ![]() 10 ![]() 15 ?
| ![]() 20 ?
| ?
| ?
| ?
| ![]() ![]() 10 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ![]() ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| |
n=1 k=11 ![]() 19 (AN) | n=2 k=5 ![]() 7 (GS) | n=3 k=4 ![]() 7 (GS) | n=4 k=4 ![]() 10 (GS) | n=5 k=4 ![]() 12 (AN) | n=6 k=1 ![]() 1 | n=7 k=? | n=8 k=3 ![]() 12 (GS) |
k=1 n=6 ![]() 1 | k=2 n=14 ![]() 10 (GS) | k=3 n=6 ![]() 9 (GS) | k=4 n=3 ![]() 7 (GS) | k=5 n=2 ![]() 7 (GS) | k=6 n=2 ![]() 10 (GS) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 8/2/14.