A polycube is a solid made from gluing unit cubes together along their faces. If S is a set of positive integers, we call a polycube P a S-faced polycube if S is the set of areas of the faces of P. What is the smallest (in terms of volume) S-faced polycube for various S?
When S={n}, solutions are known for for all n except n = 2 and n = 3. Can you find a solution for one of these values of n? Can you prove they don't exist? Can you find smaller solutions for the other values of n?
Solutions are known for all S={m,n}. Can you improve any of the best known solutions? Is every S={m,n,p} possible?
Given two particular polyominoes, is there a polycube that only has those two faces?
If there are an equal number n of faces with each area in S, we call P a balanced S-faced polycube. What balanced polycubes exist? In particular, what is the smallest k or the smallest n for which a {1,2,3,...k}n balanced polycube exists?
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
1 | none (Joe DeVincentis) | ? | 8 | 25 (George Sicherman) | 288 (George Sicherman) |
7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|
245 (Bryce Herdt) | 64 | 27 | 500 (Bryce Herdt) | 121 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|
144 | 169 | 196 | 225 | 64 | 289 | 324 | 361 | 200 |
m \ n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
2 | 2 | ||||||||
3 | 3 | 13 (George Sicherman) | |||||||
4 | 4 | 4 | 15 (George Sicherman) | ||||||
5 | 5 | 10 | 12 | 20 | |||||
6 | 6 | 12 | 9 | 12 | 30 | ||||
7 | 7 | 28 (George Sicherman) | 24 (George Sicherman) | 36 (Bryce Herdt) | 18 | 72 (George Sicherman) | |||
8 | 8 | 16 | 21 (George Sicherman) | 16 | 40 | 48 | 48 (George Sicherman) | ||
9 | 9 | 18 | 9 | 32 (Bryce Herdt) | 45 | 18 | 24 | 53 (George Sicherman) | |
10 | 10 | 20 | 33 (George Sicherman) | 20 | 25 (George Sicherman) | 40 (Bryce Herdt) | 91 | 80 | 90 |
We can also ask for solutions that have the same number of faces with area m and n.
m \ n | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
2 | 10 (George Sicherman) | ||||
3 | 6 (George Sicherman) | 18 (George Sicherman) | |||
4 | 30 (Bryce Herdt) | 24 (Bryce Herdt) | 15 (George Sicherman) | ||
5 | 28 (Bryce Herdt) | 164 (George Sicherman) | 12 | 108 (George Sicherman) | |
6 | 42 (Bryce Herdt) | 12 (George Sicherman) | 18 (George Sicherman) | 24 | 365 (George Sicherman) |
7 | 48 (Bryce Herdt) | 469 (George Sicherman) | 126 (Bryce Herdt) | 253 (George Sicherman) | 18 |
8 | 25 (Bryce Herdt) | 208 (Bryce Herdt) | 115 (Bryce Herdt) | 32 (Bryce Herdt) | 323 (George Sicherman) |
9 | 26 (Bryce Herdt) | 379 (George Sicherman) | 90 (Bryce Herdt) | 131 (George Sicherman) | 46 |
10 | 62 (George Sicherman) | 276 (George Sicherman) | 280 (Bryce Herdt) | 156 (George Sicherman) | 50 (George Sicherman) |
m \ n | 6 | 7 | 8 | 9 |
---|---|---|---|---|
7 | 319 (George Sicherman) | |||
8 | 436 (George Sicherman) | 412 (Bryce Herdt) | ||
9 | 198 (Bryce Herdt) | 24 | 53 (George Sicherman) | |
10 | 224 (George Sicherman) | 476 (George Sicherman) | 584 (Bryce Herdt) | 684 (Bryce Herdt) |
m \ n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|
3 | 3 (GS) | |||||||
4 | 4 (GS) | 4 (GS) | ||||||
5 | 5 (GS) | 6 (GS) | 8 (GS) | |||||
6 | 6 (GS) | 6 (GS) | 7 (GS) | 10 (GS) | ||||
7 | 7 (GS) | 7 (GS) | 8 (GS) | 7 (GS) | 11 (GS) | |||
8 | 8 | 8 | 8 | 9 (GS) | 9 | 11 (GS) | ||
9 | 9 | 9 | 9 | 9 | 10 (GS) | 10 | 13 (GS) | |
10 | 10 (GS) | 10 (GS) | 10 (GS) | 10 (GS) | 10 (GS) | 10 (GS) | 11 (GS) | 14 (GS) |
m \ n | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|
4 | 6 (GS) | ||||||
5 | 8 (GS) | 10 (GS) | |||||
6 | 6 (GS) | 8 (GS) | 18 (GS) | ||||
7 | 13 (GS) | 14 (GS) | 12 (GS) | 14 (GS) | |||
8 | 16 (GS) | 8 | 29 (BH) | 16 | 28 (GS) | ||
9 | 14 (GS) | 18 (BH) | 19 (BH) | 18 (GS) | 16 (GS) | 18 (BH) | |
10 | 16 (GS) | 16 (GS) | 10 (GS) | 12 (GS) | 14 (GS) | 20 (GS) | 18 (GS) |
m \ n | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|
5 | 17 (BH) | |||||
6 | 12 (GS) | 15 (GS) | ||||
7 | 19 (BH) | 14 (GS) | 21 | |||
8 | 12 (GS) | 20 (GS) | 24 | 42 (GS) | ||
9 | 12 (GS) | 18 (BH) | 18 | 18 (BH) | 18 (BH) | |
10 | 22 (BH) | 15 (BH) | 30 (GS) | 30 (BH) | 27 (BH) | 30 (GS) |
m \ n | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|
6 | 24 (GS) | ||||
7 | 25 (BH) | 42 (GS) | |||
8 | 20 | 24 | 28 | ||
9 | 19 (GS) | 30 (GS) | 44 (BH) | 32 (GS) | |
10 | 20 (BH) | 24 (GS) | 40 (BH) | 32 (GS) | 40 (BH) |
m \ n | 6 | 7 | 8 | 9 |
---|---|---|---|---|
7 | 34 (BH) | |||
8 | 58 (GS) | 60 (BH) | ||
9 | 36 (GS) | 20 (BH) | 59 (BH) | |
10 | 30 (BH) | 35 (BH) | 40 (BH) | 45 (BH) |
m \ n | 7 | 8 | 9 |
---|---|---|---|
8 | 40 (BH) | ||
9 | 36 (GS) | 36 (GS) | |
10 | 54 (BH) | 32 (BH) | 60 (GS) |
{7,8,9} | {7,8,10} | {7,9,10} | {8,9,10} |
---|---|---|---|
46 (BH) | 112 (GS) | 119 (BH) | 52 (BH) |
Bryce Herdt managed to prove that all triples {m,n,p} have a solution. Then, in 2021, Bryce Herdt and George Sicherman proved that any set of two or more positive integers is the set of different areas of the faces of some polycube!
2 (GS) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 (GS) | ?
| 4 (GS) 13 (GS) ?
|
| 4 (GS) ?
| ?
| ?
|
| ?
| 16 ?
| ?
| ?
|
| 48 (GS) 4 (GS) ?
| 15 (GS) ?
| 24 (GS)
| 5 (GS) 20 (GS) 15 (GS) ?
| ?
| ?
| ?
|
| 8 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| 5 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| 30 (GS) ?
| 18 (GS) ?
| ?
| ?
| ?
| ?
| ?
|
| 14 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| 38 (BH) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| 14 (GS) ?
| ?
| 12 ?
| ?
| 30 (GS) ?
| ?
|
| 9 (GS) 36 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| 5 (GS) 10 15 ?
| 20 ?
| ?
| ?
| ?
|
| 10 (GS) ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
|
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| ?
| |
n=1 k=11 19 (AN) | n=2 k=5 7 (GS) | n=3 k=4 7 (GS) | n=4 k=4 10 (GS) | n=5 k=4 12 (AN) | n=6 k=1 1 | n=7 k=? | n=8 k=3 12 (GS) |
k=1 n=6 1 | k=2 n=14 10 (GS) | k=3 n=6 9 (GS) | k=4 n=3 7 (GS) | k=5 n=2 7 (GS) | k=6 n=2 10 (GS) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 8/2/14.