n | # Roots | Roots | Coefficients | Solutions | Author |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | ||
2 | 1 | –2 | 1 2 | 1 | |
3 | 2 | –1, –2 | 1 3 2 | 1 | |
4 | 1 | –1 | 1 2 4 3 | 8 | |
5 | 1 | –2 | 1 3 4 5 2 | 2 | |
6 | 1 | –2 | 1 3 4 6 5 2 | 9 | |
7 | 2 | –1, –1 | 1 2 6 7 3 5 4 | 26 | |
8 | 3 | –1, –1, –2 | 3 7 2 4 8 1 5 6 | 1 | |
9 | 2 | –2, –2 | 1 5 9 7 2 3 6 4 8 | 2 | |
10 | 0 | 10! | Johan de Ruiter | ||
11 | 2 | –1, –2 | 1 2 3 6 4 11 7 5 8 9 10 | 786 | Johan de Ruiter |
12 | 2 | –1, –2 | 1 2 3 7 6 11 9 10 8 5 12 4 | 3132 | Johan de Ruiter |
13 | 0 | 13! | Johan de Ruiter | ||
14 | 1 | –2 | 1 2 3 5 4 12 6 13 7 11 8 14 9 10 | 1947354 | Johan de Ruiter |
n | # Roots | Roots | Coefficients | Solutions | Author |
---|---|---|---|---|---|
1 | 0 | 1 | 1 | ||
2 | 1 | –2 | 1 2 | 2 | |
3 | 2 | –1, –2 | 1 3 2 | 2 | |
4 | 1 | –1 | 1 2 4 3 | 24 | |
5 | 2 | –2.524, –1.194 | 1 3 2 4 5 | 38 | |
6 | 3 | –3.414, –0.682, –0.585 | 1 4 3 5 6 2 | 14 | |
7 | 4 | –3.310, –1, –1, –0.865 | 1 5 6 2 4 7 3 | 4 | |
8 | 3 | –1.514, –1, –1 | 1 2 3 7 6 4 8 5 | 2282 | |
9 | 4 | –2.582, –1.526, –0.817, –0.296 | 1 4 5 6 7 3 8 9 2 | 448 | |
10 | 5 | –3.317, –2.023, –1.262, –0.571, –0.453 | 1 6 10 4 3 7 5 9 8 2 | 4 | |
11 | 4 | –3.247, –1, –0.797, –0.296 | 1 4 5 11 10 6 7 3 8 9 2 | ? | Maurizio Morandi |
12 | 5 | –3.213, –2.412, –1.323, –0.859, –0.186 | 1 6 10 5 8 9 4 11 3 7 12 2 | ? | Maurizio Morandi |
n | # Repeated Roots | Repeated Roots | Coefficients | Solutions |
---|---|---|---|---|
1 | 0 | 1 | 1 | |
2 | 0 | 1 2 | 2 | |
3 | 0 | 1 2 3 | 6 | |
4 | 0 | 1 2 3 4 | 24 | |
5 | 0 | 1 2 3 4 5 | 120 | |
6 | 0 | 1 2 3 4 5 6 | 720 | |
7 | 1 | –1 | 1 2 6 7 3 5 4 | 26 |
8 | 1 | –1 | 1 2 3 7 6 4 8 5 | 120 |
9 | 1 | –2 | 1 5 9 7 2 3 6 4 8 | 4 |
10 | 2 | (1+√3)/2, (1–√3)/2 | 1 6 2 9 7 10 8 4 5 3 | 6 |
n | Curvature | Coefficients | Solutions | Author |
---|---|---|---|---|
1 | 0 | 1 | 1 | |
2 | 0 | 1 2 | 2 | |
3 | 0.707+ | 1 3 2 | 1 | |
4 | 0.041+ | 2 1 4 3 | 1 | |
5 | 0.034+ | 1 3 2 5 4 | 1 | |
6 | 0.0248+ | 3 2 4 1 6 5 | 1 | |
7 | 0.0181+ | 5 6 1 4 2 7 3 | 1 | |
8 | 0.01310+ | 2 6 5 1 4 3 8 7 | ? | |
9 | 0.01017+ | 4 8 6 2 1 5 3 9 7 | ? | Maurizio Morandi |
10 | 0.007993+ | 4 8 7 6 2 1 5 3 10 9 | ? | Maurizio Morandi |
11 | 0.006582+ | 5 9 8 7 4 2 1 6 3 11 10 | ? | Maurizio Morandi |
12 | 0.005503+ | 5 10 9 8 7 4 2 1 6 3 12 11 | ? | Maurizio Morandi |
n | Area | Coefficients | Solutions | Author |
---|---|---|---|---|
1 | 2 | 1 | 1 | |
2 | 4 | 1 2 | 1 | |
3 | 4 | 3 2 1 | 1 | |
4 | 14/3 = 4.666+ | 2 4 3 1 | 2 | |
5 | 28/5 = 5.6 | 4 5 3 2 1 | 1 | |
6 | 106/15 = 7.066+ | 2 6 5 4 3 1 | 4 | |
7 | 38/5 = 7.6 | 7 6 4 5 3 2 1 | 1 | |
8 | 304/35 = 8.685+ | 4 8 7 6 5 3 2 1 | 4 | |
9 | 598/63 = 9.492+ | 8 9 6 7 5 4 3 2 1 | 1 | Maurizio Morandi |
10 | 680/63 = 10.793+ | 8 10 7 9 6 5 4 3 2 1 | 10 | Maurizio Morandi |
11 | 888/77 = 11.532+ | 10 11 9 8 6 7 5 4 3 2 1 | 1 | Maurizio Morandi |
12 | 43354/3465 = 12.511+ | 10 12 9 11 7 8 6 4 5 3 2 1 | 2 | Maurizio Morandi |
Maurizio Morandi proved that the minimum area must be at least n.
Maurizio Morandi thought we should investigate the polynomials which minimize arclength as well.
n | Arclength | Coefficients | Solutions | Author |
---|---|---|---|---|
1 | 2 | 1 | 1 | Maurizio Morandi |
2 | 2.828+ | 1 2 | 1 | Maurizio Morandi |
3 | 4.646+ | 1 2 3 | 1 | Maurizio Morandi |
4 | 7.218+ | 2 3 1 4 | 1 | Maurizio Morandi |
5 | 11.169+ | 2 4 3 1 5 | 1 | |
6 | 16.509+ | 1 3 5 4 2 6 | 1 | |
7 | 22.486+ | 1 3 5 6 4 2 7 | 1 | |
8 | 29.128+ | 2 6 7 5 4 3 1 8 | 1 | |
9 | 37.130+ | 2 6 8 7 5 4 3 1 9 | 1 | Maurizio Morandi |
10 | 46.482+ | 1 3 5 8 9 7 6 4 2 10 | 1 | Maurizio Morandi |
11 | 56.495+ | 1 3 5 8 10 9 7 6 4 2 11 | 1 | Maurizio Morandi |
12 | 67.136+ | 2 6 9 11 10 8 7 5 4 3 1 12 | 1 | Maurizio Morandi |
Maurizio Morandi proved that the minimum arclength must be at least (n2–n+2)/2.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 6/1/18.