Here are the best known solutions for the 2-weightominoes and 3-weightominoes.
|
|
Here are the best known solutions for the 4-weightominoes. We did not include the square 4-weightominoes because they can all tile a 2×2 square with 2 or 4 rotated copies (and the pictures are quite messy).
|
|
Here are the best known solutions for the 5-weightominoes with weight 6.
|
|
Here are the best known solutions for some of the 5-weightominoes with weight 7.
|
|
George Sicherman also found these pentominoes with weight 7 tiled:
![]() | ![]() |
![]() | ![]() |
![]() |
Here are the small polyominoes that cannot tile a rectangle, but can as weightominoes:
Polyomino | Weighted Order | Configuration |
---|---|---|
![]() | 8 | ![]() (Bryce Herdt) |
![]() | 8 | ![]() (George Sicherman) |
![]() | 24 | ![]() (George Sicherman) |
![]() | 160 | 20×20×2 (George Sicherman) |
![]() | 4 | ![]() (George Sicherman) |
![]() | 4 | ![]() (George Sicherman) |
![]() | 8 | ![]() (Joe DeVincentis) |
![]() | 12 | ![]() (George Sicherman) |
![]() | 16 | ![]() (George Sicherman) |
![]() | 28 | ![]() (George Sicherman) |
![]() | 48 | ![]() (George Sicherman) |
![]() | 96 | 16×18×2 (George Sicherman) |
![]() | 120 | 10×18×4 (George Sicherman) |
![]() | 8 | ![]() (George Sicherman) |
![]() | 12 | ![]() (George Sicherman) |
![]() | 12 | ![]() (George Sicherman) |
![]() | 20 | ![]() (George Sicherman) |
![]() | 20 | ![]() (George Sicherman) |
![]() | 24 | ![]() (George Sicherman) |
![]() | 24 | ![]() (George Sicherman) |
![]() | 24 | ![]() (George Sicherman) |
![]() | 30 | ![]() (George Sicherman) |
![]() | 30 | ![]() (George Sicherman) |
![]() | 32 | ![]() (George Sicherman) |
![]() | 32 | ![]() (George Sicherman) |
![]() | 32 | ![]() (George Sicherman) |
![]() | 32 | ![]() (George Sicherman) |
![]() | 36 | ![]() (George Sicherman) |
![]() | 40 | ![]() (George Sicherman) |
![]() | 48 | ![]() (George Sicherman) |
![]() | 48 | ![]() (George Sicherman) |
![]() | 54 | 9×14×3 (George Sicherman) |
![]() | 60 | 10×14×3 (George Sicherman) |
![]() | 60 | 14×15×2 (George Sicherman) |
![]() | 72 | 12×14×3 (George Sicherman) |
![]() | 80 | 10×14×4 (George Sicherman) |
![]() | 88 | 11×14×4 (George Sicherman) |
![]() | 96 | 12×14×4 (George Sicherman) |
![]() | 96 | 12×14×4 (George Sicherman) |
![]() | 100 | 10×14×5 (George Sicherman) |
Bryce Herdt showed that all C polyominoes with an even number of squares tile rectangles as weightominoes.
Here are the small polyominoes that have smaller orders as weightominoes:
Polyomino | Order | Weighted Order | Configuration |
---|---|---|---|
![]() | 92 | 20 | ![]() (George Sicherman) |
![]() | 28 | 6 | ![]() (George Sicherman) |
![]() | 76 | 16 | ![]() (George Sicherman) |
![]() | 246 | 36 | ![]() (George Sicherman) |
![]() | 180 | 60 | 12×20×2 (George Sicherman) |
Bryce Herdt told me about this page by Alexandre Owen Muniz, where he defines weightominoes, which he calls sumominoes.
Bryce Herdt tiled all the weightominoes with total weight 4 into a rectangle:
Alexandre Owen Muniz then asked whether there was a n-omino whose weightominoes with weight n+1 tiled some rectangle. Bryce Herdt found this solution.
George Sicherman extended the investigation to some weightominoes using weights 1-3:
![]() | ![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() |
![]() | ![]() | ![]() |
![]() | ![]() |
Bryce Herdt noted that the unsolved can tile a 4×4 square with depth 21 if we allowed positive and negative copies of the polyomino!
George Sicherman then showed that can tile a 4×4 square with depth 10 and
can tile a 4×4 square with depth 18 allowing negative copies.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 7/31/09.