![]() r = √2 / 2 | ![]() r = √185 / 8 | ![]() r = √505 / 8 | ![]() r = 3.967+ |
![]() r = 5.193+ | ![]() r = 6.553+ | ![]() r = 7.935+ | ![]() r = 9.475+ |
![]() r = 11.216+ | ![]() r = 12.869+ | ![]() r = 14.513+ | ![]() r = 16.161+ |
![]() r = 17.924+ | ![]() r = 19.670+ | ![]() r = 21.631+ |
![]() s = 2 | ![]() s = 4 | ![]() s = 7 | ![]() s = 7√2 |
![]() s = 13 | ![]() s = 16 | ![]() s = 14 + 4√2 | ![]() s = 23 |
![]() s = 7 + 14√2 | ![]() s = 31 | ![]() s = 28 + 5√2 | ![]() s = 24 + 11√2 |
![]() s = 44 | ![]() s = 19 + 21√2 | ![]() s = 10 + 31√2 | ![]() s = 43 + 11√2 |
![]() s = 15 + 69/√2 | ![]() s = 51 + 13√2 |
Ed Pegg sent optimal solutions for squares in rectangles that he gathered from other sources. What are solutions for larger n?
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() | ||
![]() | ![]() | ![]() (Maurizio Morandi) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 7/10/10.