![]() {4} | ![]() {5} | ![]() {6} |
Call a collection of squares k-balanced if it has an equal number k of squares of each size. If we have a finite k-balanced neighborly collection of squares, what is the smallest possible value of k?
Given a rectangle, how can it be tiled with squares to maximize the proportion of the squares that are neighborly? What proportion of squares an infinite strip of a fixed width can be neighborly?
The known solutions are shown below.
![]() {5} | ![]() {6} | ![]() {4,6} | ![]() {5,6} | ![]() {4,7} | ![]() {5,7} | ![]() {4,6,7} (MM) |
![]() {5,6,7} (JD) | ![]() {5,8} | ![]() {4,5,8} (JD) | ![]() {5,6,8} (MM) | ![]() {4,5,6,8} | ![]() {4,9} (JD) | ![]() {4,10} (JD) |
![]() {4,8,10} (MM) | ![]() {4,11} (JD) | ![]() {4,5,12} (MM) | ![]() {4,5,6,8,12} (MM) | ![]() {4,5,8,12,16} (MM) |
![]() {4,5,8,12,20} (MM) | ![]() {4,5,6,8,12,20} (MM) | ![]() {4,5,6,8,12,20,28} (MM) |
The tilings below are infinite families, because blocks of 4's can be replaced by larger multiples of 4. Furthermore, these can be combined.
![]() {4} | ![]() {4,6,8} (MM) | ![]() {4,5,7,8} (MM) | ![]() {4,5,8,10} (MM) | ![]() {4,5,10,16} (MM) | |
![]() {4,5,6,8,12,16} (MM) | ![]() {4,5,8,12,16,20} (MM) | ||||
![]() {4,5,6,8,12,20,24} (MM) | ![]() {4,5,6,8,12,36} (MM) | ![]() {4,5,6,8,16,36} (MM) | |||
![]() {4,5,6,8,32,36} (MM) | ![]() {4,5,6,8,12,40} (MM) | ![]() {4,5,6,8,16,40} (MM) | |||
![]() {4,5,6,8,32,48} (MM) | ![]() {4,5,6,12+4n,44+4n+4m} (MM) |
Joe DeVincentis showed that {4,N} neighborly tilings always exist for N≥6, by generalizing the {4,8}, {4,9}, {4,10}, and {4,11} tilings. Maurizio Morandi showed that {4,4n,4n+8+m} tilings exist for n>1 and m≥0. Joe DeVincentis also proved that a {4,5} planar tiling is not possible.
![]() {2} | ![]() {3} | ![]() {4} | ![]() {3,6} | ![]() {3,4,6} |
The strips below were found by Maurizio Morandi. The ones in the last column can be combined with the plane tilings above.
![]() {1} | ![]() {2} | ![]() {1,2} | ![]() {3} |
![]() {1,3} | ![]() {2,3} | ![]() {1,2,3} (GS) | ![]() {4} |
![]() {1,4} | ![]() {2,4} | ![]() {1,2,4} | ![]() {3,4} |
![]() {1,3,4} | ![]() {2,3,4} | ![]() {1,2,3,4} | ![]() {5} |
![]() {1,5} | ![]() {2,5} | ![]() {1,2,5} | ![]() {3,5} (MM) |
![]() {1,3,5} | ![]() {2,3,5} | ![]() {1,2,3,5} | ![]() {4,5} |
![]() {1,4,5} | ![]() {2,4,5} | ![]() {1,2,4,5} | ![]() {3,4,5} (JD) |
![]() {1,3,4,5} (MM) | ![]() {2,3,4,5} | ![]() {1,2,3,4,5} | ![]() {6} |
![]() {1,6} (MM) | ![]() {2,6} (MM) | ![]() {1,2,6} | ![]() {3,6} (MM) |
![]() {1,3,6} | ![]() {2,3,6} | ![]() {1,2,3,6} | ![]() {4,6} |
![]() {1,4,6} (MM) | ![]() {2,4,6} (MM) | ![]() {1,2,4,6} | ![]() {3,4,6} (MM) |
![]() {1,3,4,6} (MM) | ![]() {2,3,4,6} (MM) | ![]() {1,2,3,4,6} | ![]() {5,6} |
![]() {1,5,6} (MM) | ![]() {2,5,6} (MM) | ![]() {1,2,5,6} | possible with hundreds of squares {3,5,6} |
![]() {1,3,5,6} (MM) | ![]() {2,3,5,6} | ![]() {1,2,3,5,6} (MM) | ![]() {4,5,6} |
![]() {1,4,5,6} (MM) | ![]() {2,4,5,6} (MM) | ![]() {1,2,4,5,6} (MM) | ? {3,4,5,6} |
![]() {1,3,4,5,6} (MM) | ![]() {2,3,4,5,6} (MM) | ![]() {1,2,3,4,5,6} (MM) | ![]() {7} |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ![]() 0 | |||||||||||
2 | ![]() 1 | ![]() 0 | ||||||||||
3 | ![]() 2/3 | ![]() 1/3 | ![]() 0 | |||||||||
4 | ![]() 1/2 | ![]() 1/5 | ![]() 1/4 | ![]() 1 | ||||||||
5 | ![]() 2/5 | ![]() 1/2 | ![]() 1/7 | ![]() 1/4 | ![]() 1/8 | |||||||
6 | ![]() 1/3 | ![]() 1/3 | ![]() 1/7 | ![]() 2/3 | ![]() 4/5 | ![]() 2/3 (GA) | ||||||
7 | ![]() 2/7 | ![]() 1/4 | ![]() 2/5 | ![]() 2/7 | ![]() 2/7 | ![]() 3/5 (MM) | ![]() 4/9 | |||||
8 | ![]() 1/4 | ![]() 1/2 | ![]() 1/4 | ![]() 1 | ![]() 1/3 | ![]() 2/3 (GS) | ![]() 1/3 (GS) | ![]() 1/2 (GA) | ||||
9 | ![]() 2/9 | ![]() 1/3 | ![]() 2/11 | ![]() 3/7 (MM) | ![]() 4/9 | ![]() 1/2 (MM) | ![]() 3/7 (GS) | ![]() 3/7 (GS) | ![]() 5/11 | |||
10 | ![]() 1/5 | ![]() 3/5 | ![]() 1/4 | ![]() 5/7 | ![]() 1/3 (GS) | ![]() 5/7 | ![]() 2/5 (GS) | ![]() 1/2 (MM) | ![]() 4/9 (GS) | ![]() 6/11 | ||
11 | ![]() 2/11 | ![]() 3/7 | ![]() 2/9 | ![]() 4/9 (GS) | ![]() 1/3 (MM) | ![]() 1/2 | ![]() 1/2 (GS) | ![]() 5/11 (GS) | ![]() 2/5 (GS) | ![]() 4/9 (GS) | ![]() 5/14 (GS) | |
12 | ![]() 1/6 | ![]() 2/3 | ![]() 2/9 (MM) | ![]() 2/3 | ![]() 2/5 | ![]() 1/2 | ![]() 3/5 (GS) | ![]() 2/3 (GA) | ![]() 5/9 (GA) | ![]() 4/7 (GS) | ![]() 1/2 (GS) | ![]() 8/13 |
1![]() 0 | 2![]() 1 | 3![]() 2/5 | 4![]() 1/3 (MM) | 5![]() 2/9 | 6![]() 1 | 7![]() 5/7 | 8![]() 1 | 9![]() 1 |
10![]() 3/4+ε (MM) | 11![]() 5/7 (MM) | 12![]() 1 |
13![]() 17/21 (MM) | 14![]() 20/27 (MM) | 15![]() 23/25 (MM) | 16![]() 19/23 (MM) |
17![]() 4/5 (MM) | 18![]() 1 | 19![]() 1 | 20![]() 13/15 (MM) |
21![]() 22/23 (MM) |
22![]() 14/15 (MM) | 23![]() 17/18 (MM) | 24![]() 1 (MM) |
1![]() 0 | 2![]() 3/4 | 3![]() 1/2 | 4![]() 3/7 | 5![]() 3/10 | 6![]() 1/3 (MM) | 7![]() 1/4 (MM) | 8![]() 6/13 | 9![]() 4/11 (MM) | 10![]() 7/16 (MM) |
11![]() 8/19 (MM) | 12![]() 1/2 (MM) | 13![]() 1/2 (MM) | 14![]() 10/19 (MM) | 15![]() 7/11 (MM) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/29/18.