Graph theorists use the word girth to represent the length of the shortest cycle in a directed graph. Given S, L, and R, what is the largest girth G that is possible?
Similarly, if R=1, then M=L–1. (for example, the goal ♠♦♦♦→♠♠♠♠ with the rule ♠♦→♠♠)
If L=1, then M=min{S–1,R–1}. (for example, the goal ♠→♥ with the rules ♠→♣, ♣→♦, and ♦→♥)
M is clearly non-decreasing in S, L, and R. Because of the number of states, M ≤ S+S2+...+SL–1= (SL+1–2S+1)/(S–1). This upper bound can always be achieved with R=M, by having every rule move to or from a state with length L.
Here are the longest known puzzles for other cases. Only those for S=2 L=2 have been proved optimal.
L \ R | 2 | 3 | 4 | 5 | ∞ |
---|---|---|---|---|---|
2 | M=3 Goal: ♠♠→♥ Rule #1: ♠→♥ Rule #2: ♥♠→♠ Solution: ♠♠→♥♠→♠→♥ | M=5 Goal: ♥→♥♠ Rule #1: ♥→♠ Rule #2: ♠→♠♥ Rule #3: ♠♠→♥♥ Solution: ♥→♠→♠♥→♠♠→♥♥→♥♠ | M=5 | M=5 | M=5 |
3 | M=5 Goal: ♠→♠♠♥ Rule #1: ♠→♥♥ Rule #2: ♥♥→♠♥ Solution: ♠→♥♥→♠♥→ ♥♥♥→♠♥♥→♠♠♥ | M=9 Goal: ♥♥♥→♠♠♠ Rule #1: ♥♥→♠♠ Rule #2: ♥♠→♥ Rule #3: ♠→♠♥ Solution: ♥♥♥→♥♠♠→♥♠→♥♠♥→ ♥♥→♠♠→♠♥♠→♠♥→♠♥♥→♠♠♠ | M=11 Goal: ♥→♠♥♠ Rule #1: ♥→♥♠ Rule #2: ♠♠→♥♥ Rule #3: ♥♥→♠♠ Rule #4: ♠♥→♠ Solution: ♥→♥♠→♥♠♠→♥♥♥→ ♠♠♥→♠♠→♥♥→♥♥♠→ ♠♠♠→♠♥♥→♠♥→♠♥♠ | M=11? | M=13 |
4 | M=7 Goal: ♥♥→♥♥♥♠ Rule #1: ♥♥→♠♠♠ Rule #2: ♠♠→♥♠ Solution: ♥♥→♠♠♠→ ♥♠♠→♥♥♠→♠♠♠♠→ ♥♠♠♠→♥♥♠♠→♥♥♥♠ | M=13 Goal: ♠♠♠→♥♥♥♠ Rule #1: ♠♠→♥♥ Rule #2: ♥→♠♥ Rule #3: ♠♠♥→♠ Solution: ♠♠♠→♠♥♥→♠♠♥♥→♠♥→ ♠♠♥→♠♠♠♥→♠♠→♥♥→♥♠♥→ ♥♠♠♥→♥♠→♠♥♠→♠♠♥♠→♥♥♥♠ | M=15 Goal: ♥♥♥→♥♠♥♥ Rule #1: ♥→♠♠ Rule #2: ♥♥♠→♠♥ Rule #3: ♠→♥♥ Rule #4: ♥♠♥→♥ Solution: ♥♥♥→♥♥♠♠→♠♥♠→ ♥♥♥♠→♥♠♥→♥→♠♠→♥♥♠→ ♠♥→♠♠♠→♠♥♥♠→♠♠♥→ ♥♥♠♥→♥♥→♥♠♠→♥♠♥♥ | M=17 Goal: ♥♠♠→♥♥ Rule #1: ♠♠♥♥→♠♥♠♠ Rule #2: ♥♥→♠♥♠ Rule #3: ♠→♠♥ Rule #4: ♠♥→♥♥ Rule #5: ♥♥♠→♠♥ Solution: ♥♠♠→♥♠♥♠→♥♥♥♠→ ♥♠♥→♥♥♥→♠♥♠♥→♥♥♠♥→ ♠♥♥→♠♠♥♠→♠♥♥♠→♠♠♥→ ♠♠♥♥→♠♥♠♠→♥♥♠♠→ ♠♥♠→♥♥♠→♠♥→♥♥ | M=29 |
5 | M=9 Goal: ♠♠♠♥♥→♠♠♠♠ Rule #1: ♠♥→♥ Rule #2: ♥→♠♠♠♠ Solution: ♠♠♠♥♥→ ♠♠♥♥→♠♥♥→♥♥→ ♠♠♠♠♥→♠♠♠♥→ ♠♠♥→♠♥→♥→♠♠♠♠ | M=18 Goal: ♥♥♠♠♥→♠♠♥♥♥ Rule #1: ♠♠→♥ Rule #2: ♥♥→♠ Rule #3: ♥♠→♠♠♥ Solution: ♥♥♠♠♥→♥♥♥♥→♥♥♠→ ♥♠♠♥→♠♠♥♠♥→♥♥♠♥→♥♠♠♥♥→ ♥♠♠♠→♠♠♥♠♠→♥♥♠♠→♥♠♠♥♠→ ♥♥♥♠→♥♠♠→♠♠♥♠→♠♠♠♠♥→ ♠♥♠♥→♠♠♠♥♥→♥♠♥♥→♠♠♥♥♥ | M=18? | M=19 Goal: ♥♥→♥♠♥♥♠ Rule #1: ♠♥♥→♥♠ Rule #2: ♠→♠♠♥ Rule #3: ♥♥→♥♥♠ Rule #4: ♥♥♥→♠♠ Rule #5: ♥♠→♥ Solution: ♥♥→♥♥♠→♥♥♠♠♥→ ♥♥♠♥→♥♥♥→♠♠→♠♠♥♠→ ♠♠♥→♠♠♥♠♥→♠♠♥♥→ ♠♥♠→♠♥♠♠♥→♠♥♠♥→ ♠♥♥→♥♠→♥♠♠♥→♥♠♥→ ♥♠♠♥♥→♥♠♥♥→♥♠♥♥♠ | M=61 |
L \ R | 2 | 3 | 4 | 5 | ∞ |
---|---|---|---|---|---|
2 | M=3? | M=5? | M=7 Goal: ♠♣→♥♠ Rule #1: ♠→♣ Rule #2: ♣♣→♠ Rule #3: ♣→♥ Rule #4: ♥→♠♠ Solution: ♠♣→♣♣→♠→ ♣→♥→♠♠→♣♠→♥♠ | M=9 Goal: ♥♠→♥♣ Rule #1: ♣→♠ Rule #2: ♠→♥ Rule #3: ♥→♣♣ Rule #4: ♠♠→♣ Rule #5: ♥♥→♣♠ Solution: ♥♠→♥♥→ ♣♠→♠♠→♣→♠→ ♥→♣♣→♠♣→♥♣ | M=11 |
3 | M=5? | M=9? | M=15 Goal: ♥→♠♣♠ Rule #1: ♠♠→♥♣ Rule #2: ♣♣→♥ Rule #3: ♥♣→♣♠ Rule #4: ♥→♠♠ Solution: ♥→♠♠→♥♣→♠♠♣→ ♥♣♣→♥♥→♥♠♠→♥♥♣→ ♥♣♠→♣♠♠→♣♥♣→♣♣♠→ ♥♠→♠♠♠→♠♥♣→♠♣♠ | M=18 Goal: ♥♠♥→♠♠♣ Rule #1: ♥♠→♣♠ Rule #2: ♣♥♠→♣♥♣ Rule #3: ♥→♥♣ Rule #4: ♣→♠ Rule #5: ♠♠→♥ Solution: ♥♠♥→♣♠♥→ ♠♠♥→♥♥→♥♥♣→♥♥♠→ ♥♣♠→♥♠♠→♣♠♠→♠♠♠→ ♥♠→♣♠→♠♠→♥→♥♣→ ♥♣♣→♥♠♣→♣♠♣→♠♠♣ | M=38 |
4 | M=7? | M=13? | M=17 Goal: ♣♠♥♠→♣♣♠♥ Rule #1: ♣♠♠→♣ Rule #2: ♥♠→♣♣♥ Rule #3: ♥→♠ Rule #4: ♣→♥♠ Solution: ♣♠♥♠→♣♠♠♠→♣♠→♥♠♠→ ♣♣♥♠→♣♣♠♠→♣♣→♣♥♠→♣♠♠→ ♣→♥♠→♣♣♥→♣♥♠♥→♣♠♠♥→ ♣♥→♥♠♥→♣♣♥♥→♣♣♠♥ | M=23 Goal: ♥♥→♣♥♠♥ Rule #1: ♠♥→♥ Rule #2: ♥♥♣→♠♥ Rule #3: ♠→♣♣ Rule #4: ♥→♠♠ Rule #5: ♣♣→♠♥ Solution: ♥♥→♥♠♠→♥♣♣♠→♥♠♥♠→ ♥♥♠→♥♥♣♣→♠♥♣→♥♣→ ♠♠♣→♠♣♣♣→♠♣♠♥→♠♣♥→ ♣♣♣♥→♣♠♥♥→♣♥♥→♣♠♠♥→ ♣♠♥→♣♥→♣♠♠→♣♣♣♠→ ♣♠♥♠→♣♥♠→♣♥♣♣→♣♥♠♥ | M=119 |
5 | M=10 Goal: ♣→♣♠♥♥♥ Rule #1: ♣→♣♠ Rule #2: ♣♠♠→♣♥ Solution: ♣→♣♠→♣♠♠→♣♥→ ♣♠♥→♣♠♠♥→♣♥♥→♣♠♥♥→ ♣♠♠♥♥→♣♥♥♥→♣♠♥♥♥ | M=18? | M=18? | M=19? | M=362 |
If S=1 and R≥2, then G=L (for example, with rules ♥→♥♥ and ♥♥♥→♥.
If L=1, R≥2, and S≥2, then G=min{S,R}. (for example, with rules ♠→♣, ♣→♥, and ♥→♠)
G is also non-decreasing in S, L, and R. Because of the number of states, G ≤ S+S2+...+SL= (SL+1–S)/(S–1). This upper bound can always be achieved with R=G, by having every rule move to or from a state with length L.
L \ R | 2 | 3 | 4 | 5 |
---|---|---|---|---|
2 | G=3 Rule #1: ♠→♥ Rule #2: ♥♥→♠♠ Cycle: ♠♠→♠♥→♥♥→ | G=5 Rule #1: ♠→♥♥ Rule #2: ♥→♠ Rule #3: ♠♠→♥ Cycle: ♠→♥♥→♠♥→♠♠→♥→ | G=5? | G=5? |
3 | G=4 Rule #1: ♠→♥ Rule #2: ♥♥♥→♠♠♠ Cycle: ♠♠♠→♠♠♥→♠♥♥→♥♥♥→ | G=8 Rule #1: ♠→♥ Rule #2: ♥→♠♠ Rule #3: ♥♥♥→♠ Cycle: ♠→♥→♠♠→♠♥→ ♥♥→♥♠♠→♥♥♠→♥♥♥→ | G=9 Rule #1: ♠♠♥→♠♠♠ Rule #2: ♠♠→♥♥ Rule #3: ♥♠→♠ Rule #4: ♥→♠♥ Cycle: ♠♥→♠♠♥→♠♠♠→♥♥♠→ ♥♠→♠♥♠→♠♠→♥♥→♥♠♥→ | G=9? |
4 | G=5 Rule #1: ♠→♥ Rule #2: ♥♥♥♥→♠♠♠♠ Cycle: ♠♠♠♠→♠♠♠♥→ ♠♠♥♥→♠♥♥♥→♥♥♥♥→ | G=11 Rule #1: ♠♠♠→♥♥ Rule #2: ♠♠→♥♥♥♥ Rule #3: ♥→♠ Cycle: ♠♠→♥♥♥♥→♠♥♥♥→ ♠♠♥♥→♠♠♠♥→♥♥♥→♠♥♥→ ♠♠♥→♠♠♠→♥♥→♠♥→ | G=14 Rule #1: ♠♥♠♠→♥♠ Rule #2: ♥♠♠♥→♥♥ Rule #3: ♠→♠♥ Rule #4: ♥♥→♠ Cycle: ♠→♠♥→♠♥♥→ ♠♠→♠♥♠→♠♥♥♠→ ♠♠♠→♠♥♠♠→♥♠→♥♠♥→ ♥♠♥♥→♥♠♠→♥♠♠♥→♥♥→ | G=14? |
5 | G=6 Rule #1: ♠→♥ Rule #2: ♥♥♥♥♥→♠♠♠♠♠ Cycle: ♠♠♠♠♠→♠♠♠♠♥→♠♠♠♥♥→ ♠♠♥♥♥→♠♥♥♥♥→♥♥♥♥♥→ | G=11? | G=14? | G=14? |
L \ R | 2 | 3 | 4 | 5 |
---|---|---|---|---|
2 | G=3? | G=5? | G=8 Rule #1: ♥→♠ Rule #2: ♠→♣ Rule #3: ♣→♥♥ Rule #4: ♣♣→♥ Cycle: ♥→♠→♣→♥♥→ ♠♥→♠♠→♣♠→♣♣→ | G=8? |
3 | G=4? | G=8? | G=12 Rule #1: ♣→♠ Rule #2: ♠→♣♣ Rule #3: ♠♠♣→♥♣ Rule #4: ♥♠♠→♣ Cycle: ♣→♠→♣♣→ ♠♣→♠♠→♠♣♣→♠♠♣→♥♣→ ♥♠→♥♣♣→♥♠♣→♥♠♠→ | G=13 Rule #1: ♣→♥ Rule #2: ♥→♣♣ Rule #3: ♥♥→♠ Rule #4: ♠♠→♣ Rule #5: ♣♣♠→♥♠♣ Cycle: ♣→♥→♣♣→♥♣→ ♥♥→♣♣♥→♥♣♥→ ♥♥♥→♠♥→♠♣♣→ ♠♥♣→♠♥♥→♠♠→ |
4 | G=5? | G=11? | G=14? | G=14? |
5 | G=6? | G=11? | G=14? | G=14? |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 7/1/20.