Problem of the Month (August 2012)

What is the smallest square that can contain 2 or more non-overlapping squares with distinct integer areas totaling n? Can you improve the packings below, or provide other good packings for n≤100? What about equilateral triangles in equilateral triangles?


ANSWERS

The best-known solutions are shown below.

Squares in Squares
3

s = √2 + √1 = 2.414+
4

s = √3 + √1 = 2.732+
5

s = √4 + √1 = 3
6

s = √3 + √2 = 3.146+
7

s = √4 + √2 = 3.414+
8

s = √7 + √1 = 3.645+
9

s = √4 + √3 = 3.732+
10

s = √4 + √3 = 3.732+
11

s = √5 + √3 = 3.968+
12

s = √6 + √3 = 4.181+
13

s = √5 + √4 = 4.236+
14

s = √5 + √4 = 4.236+
15

s = √5 + √4 = 4.236+
16

s = √6 + √4 = 4.449+
17

s = √7 + √4 = 4.645+
18

s = √6 + √5 = 4.685+
19

s =√4+√3+√1= 4.732+
20

s = √7 + √5 = 4.881+
21

s = √8 + √5 = 5.064+
22

s = √7 + √6 = 5.095+
23

s =√4+√3+√2= 5.146+
24

s = √9 + √5 = 5.236+
25

s =√5+√3+√2= 5.382+
26

s = √9 + √6 = 5.449+
27

s =√6+√3+√2= 5.595+
(Maurizio Morandi)
28

s = √9 + √7 = 5.645+
 
29

s = √11 + √6 = 5.766+
 
30

s = √9 + √8 = 5.828+
 
31

s = √11 + √7 = 5.962+
 
32

s =√5+√4+√3= 5.968+
 
33

s =√5+√4+√3= 5.968+
 
34

s = √13 + √6 = 6.055+
 
35

s =√6+√4+√3= 6.181+
 
36

s = √13 + √7 = 6.251+
 
37

s =√7+√4+√3= 6.377+
(Maurizio Morandi)
38

s =√6+√5+√3= 6.417+
(Maurizio Morandi)
39

s = √15 + √7 = 6.518+
40

s = √13 + √9 = 6.605+
41

s =√6+√5+√4= 6.685+
42

s = √15 + √8 = 6.701+
43

s = √16 + √8 = 6.828+
44

s =√7+√5+√4= 6.881+
45

s=√10+√4+√3=6.894+
46

s=√14+√5+√1=6.977+
47

s = √14 + √11 = 7.058+
48

s =√8+√5+√4= 7.064+
49

s = √16 + √10 = 7.162+
50

s =√9+√5+√4= 7.236+
51

s = √17 + √10 = 7.285+
(Joe DeVincentis)
52

s =√10+√5+√4= 7.398+
(Joe DeVincentis)
53

s = √17 + √11 = 7.439+
(Joe DeVincentis)
54

s = √19 + √10 = 7.521+
(Joe DeVincentis)
55

s = √17 + √12 = 7.587+
(Joe DeVincentis)
56

s =√9+√7+√4= 7.645+
(Joe DeVincentis)
57

s = √18 + √12 = 7.706+
(Joe DeVincentis)
58

s =√10+√7+√4= 7.808+
(Joe DeVincentis)
59

s =√10+√6+√5= 7.847+
(Joe DeVincentis)
60

s = √20 + √12 = 7.936+
(Joe DeVincentis)
61

s = √18 + √14 = 7.984+
(Joe DeVincentis)
62

s = √21 + √12 = 8.046+
(Joe DeVincentis)
63

s = √19 + √14 = 8.100+
(Joe DeVincentis)
64

s = √21 + √13 = 8.188+
(Joe DeVincentis)
65

s = √20 + √14 = 8.213+
(Joe DeVincentis)
66

s = √21 + √14 = 8.324+
(Andrew Bayly)
67

s=√13+√4+√3+√1=8.337+
(Andrew Bayly)
68

s = √22 + √14 = 8.432+
(Andrew Bayly)
69

s =√14+√4+√3+√1= 8.473+
(Andrew Bayly)
70

s = √23 + √14 = 8.537+
(Maurizio Morandi)
71

s =√15+√4+√3+√1= 8.605+
(Andrew Bayly)
72

s = √24 + √14 = 8.640+
(Maurizio Morandi)
73

s =√14+√5+√3+√1= 8.709+
(Maurizio Morandi)
74

s = √25 + √14 = 8.741+
(Maurizio Morandi)
75

s = √26 + √14 = 8.840+
(Maurizio Morandi)
76

s =√13+√9+√5= 8.841+
(Maurizio Morandi)
77

s = √27 + √14 = 8.937+
(Maurizio Morandi)
78

s =√14+√9+√5= 8.977+
(Maurizio Morandi)
79

s = √28 + √14 = 9.033+
(Maurizio Morandi)
80

s = √27 + √15 = 9.069+
(Maurizio Morandi)
81

s =√13+√11+√5= 9.158+
(Maurizio Morandi)
82

s =√14+√9+√6= 9.191+
(Maurizio Morandi)
83

s =√16+√9+√5= 9.236+
(Maurizio Morandi)
84

s = √28 + √16 = 9.291+
(Maurizio Morandi)
85

s =√15+√9+√6= 9.322+
(Maurizio Morandi)
86

s = √29 + √16 = 9.385+
(Maurizio Morandi)
87

s =√16+√9+√6= 9.449+
(Maurizio Morandi)
88

s =√15+√10+√6= 9.484+
(Maurizio Morandi)
89

s = √31 + √16 = 9.567+
(Maurizio Morandi)
90

s =√16+√10+√6= 9.611+
(Maurizio Morandi)
91

s = √32 + √16 = 9.656+
(Maurizio Morandi)
92

s = √30 + √18 = 9.719+
(Maurizio Morandi)
93

s =√17+√9+√7= 9.768+
(Maurizio Morandi)
94

s = √31 + √18 = 9.810+
(Maurizio Morandi)
95

s =√18+√9+√7= 9.888+
(Maurizio Morandi)
96

s = √32 + √18 = 9.899+
(Maurizio Morandi)
97

s = √33 + √18 = 9.987+
(Maurizio Morandi)
98

s = √32 + √19 = 10.015+
(Maurizio Morandi)
99

s =√18+√9+√8= 10.071+
(Maurizio Morandi)
100

s = √33+√7+√3 = 10.122+
(Maurizio Morandi)

Triangles in Triangles
3

s = √2 + √1 = 2.414+
4

s = √3 + √1 = 2.732+
5

s = √4 + √1 = 3
6

s = √3 + √2 = 3.146+
7

s = √4 + √2 = 3.414+
8

s = √7 + √1 = 3.645+
9

s = √4 + √3 = 3.732+
10

s = √4 + √3 = 3.732+
11

s = √5 + √3 = 3.968+
12

s = √6 + √3 = 4.181+
13

s = √5 + √4 = 4.236+
14

s = √5 + √4 = 4.236+
15

s = √5 + √4 = 4.236+
16

s = √6 + √4 = 4.449+
17

s = √7 + √4 = 4.645+
18

s = √6 + √5 = 4.685+
 
19

s = 4.719+
(Maurizio Morandi)
20

s = √7 + √5 = 4.881+
 
21

s = 5.050+
(Maurizio Morandi)
22

s = 5.084+
(Maurizio Morandi)
23

s = 5.125+
(Maurizio Morandi)
24

s = √9 + √5 = 5.236+
 
25

s = 5.355+
(David W. Cantrell)
26

s = √9 + √6 = 5.449+
 
27

s = 5.563+
(David W. Cantrell)
28

s = 5.639+
(Maurizio Morandi)
29

s = √11 + √6 = 5.766+
 
30

s = √9 + √8 = 5.828+
 
31

s = 5.915+
(Maurizio Morandi)
32

s = 5.953+
(David W. Cantrell)

Squares in Rectangles
3

A = 2 + √2 = 3.414+
 
4

A = 3 + √3 = 4.732+
 
5

A = 3 + √6 = 5.449+
 
6

A = 4 + 2√2 = 6.828+
 
7

A = 4 + 2√3 = 7.464+
 
8

A = 8.812+
(Bryce Herdt)
9

A = 6 + 2√3 = 9.464+
(Bryce Herdt)
10

A = 7 + √14 = 10.741+
(Maurizio Morandi)
11

A = 6 + √30 = 11.477+
 
12

A = 8 + 2√6 = 12.898+
(Maurizio Morandi)
13

A = 7 + √42 = 13.480+
 
14

A = 14.888+
(Maurizio Morandi)
15

A = 10 + √30 = 15.477+
(Bryce Herdt)
16

A = 11 + √33 = 16.744+
(Bryce Herdt)
17

A = 9 + 6√2 = 17.485+
 
18

A = 12 + 4√3 = 18.928+
(Maurizio Morandi)
19

A = 10 + 3√10 = 19.486+
 
20

A = 20.920+
(Maurizio Morandi)
21

A = 14 + 2√14 = 21.483+
(Brian Trial)
22

A = 15 + 2√15 = 22.745+
(Brian Trial)
23

A = 12 + 2√33 = 23.489+
 
24

A = 15 + 3√10 = 24.486+
(Brian Trial)
25

A = 13 + 2√39 = 25.489+
 
26

A = 26.937+
(Maurizio Morandi)
27

A = 18 + 3√10 = 27.486+
(Maurizio Morandi)
28

A = 19 + √95 = 28.746+
(Maurizio Morandi)
29

A = 15 + √210 = 29.491+
 
30

A = 20 + 2√30 = 30.954+
(Maurizio Morandi)
31

A = 16 + 4√15 = 31.491+
 
32

A = 32.949+
(Maurizio Morandi)


If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/18/12.