What are the shortest pairs of flash cards that evaluate to n in one order, and n+1 in the other order? What are the 3 shortest flash cards that have different cyclical orders to evaluate to n, n+1, and n+2?
For pairs A and B of flash cards, is it possible that the 4 orders AA, AB, BA, and BB evaluate to 4 consecutive integers? Is this sort of thing possible with larger numbers of flash cards?
Joe DeVincentis found that –1+2 repeated n times evaluates to n. He also showed that 0×1 repeated n times evaluates to 0. More importantly, he showed that 0×0+n repeated k times evaluates to n.
Here are the smallest known solutions for a single flash card, repeated multiple times:
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0×1 | 0×0+1 | –1+2 | 0×0+3 | –1+3 | 0×0+5 | –1+4 | 0×0+7 | –1+5 | 0×0+9 |
10 | –1+6 | 1 | –1+7 | 1+1 | –1+8 | 2+1 | –1+9 | 3+1 | –0+9 | 4+1 |
20 | 0–1+2 | 5+1 | 2 | 6+1 | 1+2 | 7+1 | 2+2 | 8+1 | 3+2 | 9+1 |
30 | 4+2 | 0–1+3 | 5+2 | 3 | 6+2 | 1+3 | 7+2 | 2+3 | 8+2 | 3+3 |
40 | 9+2 | 4+3 | 1×2 | 5+3 | 4 | 6+3 | 1+4 | 7+3 | 2+4 | 8+3 |
50 | 3+4 | 9+3 | 4+4 | 0–1+5 | 5+4 | 5 | 6+4 | 1+5 | 7+4 | 2+5 |
60 | 8+4 | 3+5 | 9+4 | 4+5 | 0–1+6 | 5+5 | 6 | 6+5 | 1+6 | 7+5 |
70 | 2+6 | 8+5 | 3+6 | 9+5 | 4+6 | 5×1 | 5+6 | 7 | 6+6 | 1+7 |
80 | 7+6 | 2+7 | 8+6 | 3+7 | 9+6 | 4+7 | 0–1+8 | 5+7 | 8 | 6+7 |
90 | 1+8 | 7+7 | 2+8 | 8+7 | 3+8 | 9+7 | 4+8 | 0–1+9 | 5+8 | 9 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0×1 | 0×0+1 | 0×0+2 | –1+2 | 0×0+4 | 0×0+5 | –1+3 | 0×0+7 | 0×0+8 | –1+4 |
10 | 0/5+2 | 0/2+1 | –1+5 | 5/5+2 | 2/2+1 | –1+6 | 6/6+3 | 8/8+4 | –1+7 | 4/8+5 |
20 | 0/5+4 | 0+1 | 0/2+2 | 0/3+3 | 1+1 | 2/2+2 | 3/3+3 | 2+1 | 5/5+5 | 6/6+6 |
30 | 3+1 | 8/8+8 | 9/9+9 | 4+1 | 8/2+2 | 0/5+7 | 5+1 | 0×0+37 | 5/5+7 | 6+1 |
40 | 0/5+8 | 4/6+9 | 0+2 | 5/5+8 | 0/2+4 | 1+2 | 0/3+6 | 2/2+4 | 2+2 | 3/3+6 |
50 | 4/2+4 | 3+2 | 6/3+6 | 6/2+4 | 4+2 | 0/2+5 | 8/2+4 | 5+2 | 2/2+5 | 3×2+1 |
60 | 6+2 | 4/2+5 | 4+2×1 | 0+3 | 6/2+5 | 5+2×1 | 1+3 | 8/2+5 | 0×0+68 | 2+3 |
70 | 1/3+9 | 2/3+9 | 3+3 | 4/3+9 | 5/3+9 | 4+3 | 7/3+9 | 8/3+9 | 5+3 | 2×3+1 |
80 | 2/2+7 | 6+3 | 0×2+2 | 4/2+7 | 0+4 | 0×0+85 | 6/2+7 | 1+4 | 0/2+8 | 8/2+7 |
90 | 2+4 | 2/2+8 | 0×0+92 | 3+4 | 4/2+8 | 9×2+1 | 4+4 | 6/2+8 | 5+3×1 | 5+4 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0×1 | 0×0+1 | 0×0+2 | 0×0+3 | –1+2 | 0×0+5 | 0×0+6 | 0×0+7 | –1+3 | 0×0+9 |
10 | 6/6+1 | 5/5+1 | –1+4 | 0/9+3 | 0/5+2 | 3/3+1 | –1+5 | 9/9+3 | 0/6+3 | 2/4+2 |
20 | –1+6 | 0/5+3 | 6/6+3 | 8/8+4 | –1+7 | 5/5+3 | 0/9+6 | 1/7+5 | –1+8 | 1/8+6 |
30 | 8/7+5 | 0+1 | –1+9 | 6/9+7 | 6/6+5 | 1+1 | –0+9 | 3/3+3 | 4/4+4 | 2+1 |
40 | 6/6+6 | 7/7+7 | 8/8+8 | 3+1 | 3/7+8 | 9/3+3 | 6/6+7 | 4+1 | 9/6+7 | 0/5+7 |
50 | 3/6+8 | 5+1 | 6/6+8 | 5/5+7 | 9/6+8 | 6+1 | 3/6+9 | 6/4+6 | 6/6+9 | 7+1 |
60 | 9/6+9 | 7/2+3 | 0+2 | 8+1 | 0/2+4 | 0–7+3 | 1+2 | 9+1 | 2/2+4 | 1/4+8 |
70 | 2+2 | 3/4+8 | 4/4+8 | 5/4+8 | 3+2 | 7/4+8 | 8/4+8 | 9/4+8 | 4+2 | 6+6+1 |
80 | 0/2+5 | 3/3+7 | 5+2 | 6+7+1 | 2/2+5 | 6/3+7 | 6+2 | 7+7+1 | 0/3+8 | 9/3+7 |
90 | 7+2 | 7+8+1 | 3/3+8 | 0+3 | 8+2 | 8+8+1 | 6/3+8 | 1+3 | 9+2 | 0/3+9 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | –0×1 1 | 0/5 0+1 | 0/10 1+2 | 0/10 1+3 | 0/8 0+4 | 0/10 1+5 | 0/10 1+6 | 0/10 1+7 | 0/10 1+8 | 0/9 0+9 |
10 | 9/9 –0+9 | 2 0/2+1 | 2 2/2+1 | 2 4/2+1 | 2 6/2+1 | 2 8/2+1 | 0/10 1+16 | 8 0/5+1 | 8 5/5+1 | 0/10 1+19 |
20 | 0/10 1+20 | 1×2 1 | 1×2 1+1 | 1×2 2+1 | 1×2 3+1 | 1×2 4+1 | 1×2 5+1 | 1×2 6+1 | 1×2 7+1 | 1×2 8+1 |
30 | 1×2 9+1 | 5×2+2 1 | 2/2×3 2 | 6×2+2 1 | 1 65/5+2 | 7×2+2 1 | 1 75/5+2 | 8×2+2 1 | 2/2+3 7 | 4/2+3 7 |
40 | 6/2+3 7 | 8/2+3 7 | 3×1 4 | 3/3×4 3 | 5 5/5×4 | 3+3×1 4 | 4+3×1 4 | 5+3×1 4 | 6+3×1 4 | 7+3×1 4 |
50 | 8+3×1 4 | 9+3×1 4 | 0/10 1+52 | 0/10 1+53 | 4/4×5 4 | 6 6/6×5 | 4 16/8+5 | 4 24/8+5 | 4 32/8+5 | 4 40/8+5 |
60 | 4 48/8+5 | 4 56/8+5 | 1×3 1×2 | 4 72/8+5 | 4 80/8+5 | 5/5×6 5 | 7 7/7×6 | 0/10 1+67 | 2+3 3×2 | 0/10 1+69 |
70 | 0/10 1+70 | 5+2 2×3 | 0/10 1+72 | 0/10 1+73 | 0/10 1+74 | 0/10 1+75 | 6/6×7 6 | 8 8/8×7 | 2+7 6×1 | 0/10 1+79 |
80 | 0/10 1+80 | 0/10 1+81 | 0/10 1+82 | 0/10 1+83 | 0/10 1+84 | 0/10 1+85 | 0/10 1+86 | 7/7×8 7 | 9 9/9×8 | 0/10 1+89 |
90 | 0/10 1+90 | 0/10 1+91 | 2×4 5+2 | 0/10 1+93 | 0/10 1+94 | 7+2 2×4 | 0/10 1+96 | 0/10 1+98 | 8/8×9 8 | 0/10 1+99 |
Jon Palin found a general solution for triples: 0+(n-8)+9, 0/9, and 0×8. I suspect many shorter solutions exist, but only the ones below are known to be better.
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 2 10/42 0×4 (JD) | 2+1 0/5 0×5 (JD) | 1+2 0/5 0×5 (JD) | 3+3 0/6 0×2 (JD) | 2+3 5/7 0×4 (JD) | ? | ? | ? | 8+8 0/8 0×1 (JD) | 9+9 0/9 0×2 (JD) |
10 | ? | 5+2 4/2 0×5 (JD) | ? | ? | ? | ? | ? | 0/9 0×9 1+18 (JP) | ? | ? |
20 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
30 | ? | ? | 1 6/9×1 8+2 (JD) | ? | ? | 7 0/5+2 0+1 (JD) | 7 5/5+2 0+1 (JD) | 7 5/5+2 1+1 (JD) | 7 5/5+2 2+1 (JD) | 7 5/5+2 3+1 (JD) |
40 | 7 5/5+2 4+1 (JD) | 7 5/5+2 5+1 (JD) | 7 5/5+2 6+1 (JD) | 7 5/5+2 7+1 (JD) | 7 5/5+2 8+1 (JD) | 7 5/5+2 9+1 (JD) | ? | ? | ? | ? |
50 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
60 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
70 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
80 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
90 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0/5 –1+2 (JD) | –2+3 0×0+3 (JD) | –1+2 0×0+4 (JD) | 0/5+1 0/5+2 (JP) | 0/2+1 5/5+1 (BZ) | 5/5+1 5/5+2 (BH) | –1+4 0/8+4 (JD) | –2+6 0/20+6 (BZ) | –0+4 8/8+4 (JD) | 0/5+3 0/5+4 (BZ) |
10 | 0/5+4 8/8+4 (BZ) | 5/5+3 5/5+4 (BZ) | 0/5+4 0/5+5 (BZ) | –2+9 0/15+9 (BZ) | 5/5+4 5/5+5 (BZ) | 0/5+5 0/5+6 (BZ) | –1+9 0/9+9 (JD) | 5/5+5 5/5+6 (BZ) | –0+9 9/9+9 (JD) | 2 4–7+2×1 (JD) |
20 | 2 0–1+2×1 (JD) | 2 4–5+2×1 (JD) | 2 0+1+2×1 (JD) | 5/5+7 5/5+8 (BZ) | 0/5+8 0/5+9 (BZ) | 1+2×1 2+2×1 (JP) | 5/5+8 5/5+9 (BZ) | 3–1+2×1 3+2 (BZ) | 2+2×1 3+2×1 (JP) | 3+1+2 3+2×1 (JP) |
30 | 3+2×1 3+2+2 (BZ) | 3+2×1 4+2×1 (JP) | 2–4+3×1 1+3 (BZ) | 0+3×1 1+3 (JP) | 4+2×1 5+2×1 (JP) | 1+7+2 5+2×1 (JP) | 2–1+3×1 1+1+3 (BZ) | 3×1 3–6+4 (JP) | 3×1 5–8+4 (JP) | 3×1 5–7+4 (JP) |
40 | 1+4+3 2+3×1 (JP) | 4 4–4+3×1 (JD) | 4 6–6+3×1 (JD) | 4 2+1+3×1 (JD) | 4 2+2+3×1 (JD) | 2–1+4 4/2×2 (BZ) | 7+3 9+2×1 (JD) | 1+2×2 2+2×2 (JP) | 1+2+4 1+4×1 (JP) | 4+4 4+3×1 (JD) |
50 | 2+2×2 3+2×2 (JP) | 3+1+4 3+2×2 (JP) | 3+2×2 3+2+4 (JP) | 3+2×2 4+2×2 (JP) | 4×1 4–4+5 (JP) | 4–3+5 4×1 (JP) | 1+6+4 5+2×2 (JP) | 1+7+4 5+2×2 (BZ) | 5+3+4 7+3×1 (JP) | 5+2×2 6+2×2 (BH) |
60 | 1+5×1 2–5+6 (BZ) | 1+5×1 2–4+6 (BZ) | 4+4×1 4+5 (JP) | 4+1+5 4+4×1 (BZ) | 0+3×2 1–2+6 (JP) | 7+2×2 8+2×2 (JP) | 1+6 0+3×2 (JD) | 2+5×1 2+6 (JP) | 8+5 9+3×1 (JP) | 1+2×3 1+2+6 (JP) |
70 | 7+2+5 9+2×2 (JP) | 3+6 3+5×1 (JD) | 3+1+6 3+5×1 (JP) | 1+4+6 2+3×2 (JP) | 7 9–9+2×3 (JD) | 7 5–3+2×3 (JD) | 7 9–7+2×3 (JD) | 7 5–1+2×3 (JD) | 7+4×1 7+6 (JP) | 4+3×2 4+5×1 (JP) |
80 | 2+1+7 2+6×1 (BZ) | 5+2×3 6+2×3 (BH) | 4+3×2 4+7 (JP) | 1–3+8 1+7×1 (BZ) | 6+2×3 7+2×3 (BH) | 8 9–8+3×2 (JD) | 8 7–4+3×2 (JD) | 8 9–6+3×2 (JD) | 6+3×2 6+7 (JP) | 6+1+7 6+3×2 (JP) |
90 | 8+2×3 8+7 (JP) | 2+7×1 2+8 (JP) | 7+2+7 9+2×3 (JP) | 3–1+2×4 3+8 (BZ) | 6×1 6–8+9 (JP) | 6×1 6–7+9 (JP) | 2–3+9 2+4×2 (BZ) | 3+2×4 4+2×4 (JP) | 2–4+3×3 1+9 (BZ) | 0+3×3 1+9 (JP) |
Berend van der Zwaag also found 10 flash cards so that all possible pairs evaluate to the numbers 0 through 99. They are: 0–11+2, 0–11+3, ... , 0–11+11.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 8/26/16.