The known solutions are shown below. The size of the square and the unnecessary squares are given.
n \ k | 1 | 2 | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | 2 {1} | 1 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | 3 {2,1} | 2 {1} | 1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | 4 {3,2,1} | 3 {2,1} | 2 {1} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | 6 {1} (MM) | 4 {3,2,1} | 3 {2,1} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | 9 | 6 {1} (MM) | 4 {3,2,1} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | 11 {2} | 7 {5} | 6 {1} (MM) 8
| 13 {4,1} 8 {7,2,1} 7 {5} 9
| 16 {2,1} 10 {1} (MM) 8 {7,2,1} 10
| 18 {7,1} (MM) 12 {2,1} (MM) 10 {1} 11
| 21 {3} (MM) 14 {4} (MM) 11 {6,1} 12
| 24 {3,2,1} (MM) 16 {6,2} 12 {11,2,1} 13
| 28 {1} 19 {2,1} 14 {1} 14
| 31 {4,1} (MM) 21 {6,1} (MM) 16 {2,1} 15
| 34 {5,4,1} (MM) 24 {2,1} (MM) 18 {5} 16
| 38 {5,2,1} (MM) 26 {8,1} (JD) 20 {6,2} 17
| 41 {9,1} (MM) 29 {1} (JD) 22 {7,4,1} 18
| 45 {8,1} (MM) 31 {8,1} (JD) 25 {1} (MM) 19
| 49 {5} (MM) 34 {5,4,1} (MM) 27 {7,1} (MM) 20
| 53 {4,3,1} (MM) 36 {13,1} (MM) 29 {8,6,1} (MM) 21
| 57 {5,1} (MM) 39 {8,7,3} (MM) 32 {3} (MM) 22
| 61 {7,1} (MM) 42 {9} (JD) 34 {10,1} (MM) 23
| 65 {6,4,2,1} (MM) 45 {3} (JD) 36 {12,7,1} (JD) 24
| 69 {8,4,3,2} (MM) 47 {14,2,1} (JD) 39 {6,5,4,1} (JD) |
Maurizio Morandi also considered the problem of covering the largest possible squares and tans with tans of sides 1, 2, 3, ... n:
n=1 s = 1/2 | n=2 s = 3/2 | n=3 s = (6+3√2)/4 = 2.560+ | n=4 s = (11+3√2)/4 = 3.810+ | n=5 s = (26+11√2)/8 = 5.194+ | n=6 s = (62+27√2)/15 = 6.678+ | n=7 s = (76+34√2)/15 = 8.272+ | n=8 s = (98+315√2)/54 = 10.064+ |
n=9 s = (124+367√2)/54 = 11.907+ | n=10 s = (338+329√2)/58 = 13.849+ | n=11 s = (55+51√2)/8 = 15.890+ | n=12 s = (110+75√2)/12 = 18.005+ |
n=1 s = 1 | n=2 s = 3/√2 = 2.121+ | n=3 s = (3+3√2)/2 = 3.621+ | n=4 s = (6+11√2)/4 = 5.389+ | n=5 s = (11+13√2)/4 = 7.346+ | n=6 s = (27+28√2)/7 = 9.515+ | n=7 s = (16+47√2)/7 = 11.781+ |
n=8 s = 10+3√2 = 14.242+ | n=9 s = (92+197√2)/22 = 16.845+ | n=10 s = (161+191√2)/22 = 19.596+ |
n=1 1 | n=2 2 {1} | n=3 3 {2,1} | n=4 5 | n=5 7 {1} | n=6 9 {2,1} | n=7 23/2 =11.5 (MM) | n=8 14 {1} | n=9 117/7 = 16.714+ (MM) | n=10 175/9 = 19.444+ (MM) | n=11 89/4 = 22.25 (MM) | n=12 201/8 = 25.125 (MM) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 8/1/18.