n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | none | none | 3 ![]() 5
| none
| 3 | ![]() 4 | ![]() 4 | ![]() ![]() 5 ![]() 6
| none
| 3 | ![]() none
| 5 | ![]() none
| 7
| none
| none
| 3 | ![]() 4 ![]() ![]() 4 | ![]() none
| 6 | ![]() 8
| none
| none
| 6 | ![]() 6 | ![]() 6 | ![]() 8 ![]() 7 | ![]() 11 | ![]() 12 ![]() ![]() ![]() ![]() 9
| none
| 3 | ![]() 4 | ![]() none
| 10 | ![]() 12 | ![]() 14 | ![]() 10
| 4 | ![]() 6 | ![]() 6 | ![]() ![]() 8 ![]() 6 | ![]() 8 | ![]() none
| 15 | ![]() 11
| 4 | ![]() ![]() none
| 5 | ![]() none
| 12 | ![]() none
| none
| 12
| none
| 4 | ![]() none
| none
| 13 | ![]() 16 | ![]() 18 | ![]() |
n \ m | 9 | 10 | 11 | 12 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 16 ![]() 10
| 17 | ![]() none
| 11
| none
| 19 | ![]() 21 | ![]() 12
| 18 | ![]() 17 | ![]() none
| 27 | ![]() 28 ![]() |
n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | none | none | 3 ![]() ![]() | 3 ![]() ![]() 4 ![]() ![]() ![]()
6
| none
| 3 | ![]() ![]() 3 | ![]() 4 ![]() ![]() ![]() 4 | ![]() ![]() ![]() ![]() 5 ![]() ![]() 4 | ![]() ![]() 5 ![]() 6 ![]() ![]() 7
| none
| 3 | ![]() 3 | ![]() ![]() ![]() 4 ![]() ![]() ![]()
4 | ![]() ![]() 5 | ![]() 6 ![]() 6 | ![]() 8 ![]() 8
| none
| 3 | ![]() ![]() ![]() ![]() ![]() 4 ![]() none
| 6 | ![]() ![]() 6 | ![]() none
| 8 | ![]() ![]() ![]() 10 ![]() ![]() 9
| 3 | ![]() 3 | ![]() ![]() 4 ![]() 4 | ![]() ![]() 5 ![]() 6 ![]() none
| 8 | ![]() 10 | ![]() 9 | ![]() 11 ![]() 10
| 3 | ![]() ![]() 4 | ![]() ![]() 5 ![]() 5 | ![]() 6 ![]() ![]() ![]()
6 | ![]() ![]() 8 | ![]() 9 ![]() 10 | ![]() 11 ![]() none
| 11
| 3 | ![]() ![]() 4 | ![]() ![]() ![]() 5 ![]() 5 | ![]() ![]() 6 ![]() none
| 8 | ![]() 9 ![]() 10 ![]() none
| 14 | ![]() ![]() 12
| 4 | ![]() ![]() 5 | ![]() ![]() ![]() ![]() 6 ![]() ![]() 7 | ![]() 8 ![]() ![]() 10 | ![]() ![]() 10 | ![]() 11 ![]() none
| none
| |
n \ m | 9 | 10 | 11 | 12 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 11 ![]() 12 ![]() 10
| 11 | ![]() ![]() 14 | ![]() 16 ![]() ![]()
11
| 16 | ![]() 16 | ![]() 17 ![]() 18 ![]() ![]() 16 | ![]() 17 ![]() 20 ![]() 12
| 16 | ![]() 18 ![]() 16 | ![]() ![]() none
| 20 | ![]() ![]() |
n \ m | 3 | 4 | 5 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | none | none | 3 ![]() ![]() ![]() 6
| none
| 3 | ![]() ![]() 3 | ![]() ![]() ![]() ![]() ![]() ![]() ![]() 4 ![]() ![]() ![]() ![]() 7
| 3 | ![]() 3 | ![]() ![]() ![]() ![]() ![]()
4 ![]() 3 | ![]() ![]() 4 ![]() ![]() ![]() ![]() ![]() ![]()
5 ![]() 8
| none
| 3 | ![]() ![]() ![]() ![]() 4 ![]() ![]() 3 | ![]() 4 ![]() ![]() ![]() 5 ![]() 9
| 3 | ![]() ![]() ![]() ![]()
3 | ![]() 4 ![]() ![]() ![]() ![]() ![]()
4 | ![]() ![]() 5 ![]() ![]() ![]() 6 ![]() ![]() 10
| 3 | ![]() ![]() ![]() ![]() 4 | ![]() ![]() 5 ![]() 4 | ![]() ![]() 5 ![]() 6 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 11
| 3 | ![]() ![]() ![]() ![]() 4 ![]() ![]() ![]() ![]() ![]() ![]() 3 | ![]() 4 ![]() ![]() ![]() ![]() ![]() 5 ![]() ![]() ![]() ![]() 6 ![]() 5 | ![]() ![]() 6 ![]() ![]() ![]() 7 ![]() 12
| 3 | ![]() 4 ![]() 4 | ![]() 5 ![]() 6 ![]() ![]() 6 | ![]() 8 ![]() |
n \ m | 6 | 7 | 8 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 3 ![]() ![]() 4 ![]() ![]() ![]() ![]()
7
| 4 | ![]() ![]() ![]()
5 ![]() ![]() ![]() 6 ![]() 5 | ![]() ![]() 6 ![]() ![]() ![]() 7 ![]() 8
| 4 | ![]() 6 ![]() ![]() ![]() ![]() 6 | ![]() ![]()
7 ![]() ![]() 7 | ![]() ![]() ![]() 8 ![]() ![]() ![]() ![]() ![]()
9
| 6 | ![]() ![]() 7 | ![]() ![]() 8 ![]() ![]() ![]() 8 | ![]() ![]() ![]() 9 ![]() 10 ![]() 10
| 6 | ![]() ![]() ![]() ![]() ![]() 7 ![]() ![]() 8 ![]() ![]() ![]() ![]() 6 | ![]() 7 ![]() 8 ![]() ![]() ![]() 9 ![]() 8 | ![]() 9 ![]() 10 ![]() ![]() ![]() 11
| 6 | ![]() 8 ![]() ![]() ![]()
8 | ![]() ![]() ![]() 9 ![]() ![]() 9 | ![]() 10 ![]() ![]() 12
| 9 | ![]() 10 ![]() 8 | ![]() 10 ![]() ![]() 12 | ![]() |
Pentominoes | 3 ![]() | ![]() | 5 ![]() | 6 ![]() | 7 ![]() | 11 ![]() | 13 ![]() |
15 ![]() | 17 ![]() | ![]() | 21 ![]() | 27 ![]() |
Hexominoes | 3 ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 5 ![]() | ![]() | ![]() | 6 ![]() | 7 ![]() | 9 ![]() | ![]() | ![]() |
10 ![]() | 11 ![]() | ![]() | ![]() | 14 ![]() | 16 ![]() | 17 ![]() |
Heptominoes | 3 ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
4 ![]() | ![]() | ![]() | 5 ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
6 ![]() | ![]() | ![]() | ![]() | 7 ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | 8 ![]() | ![]() | 9 ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | 10 ![]() |
Berend van der Zwaag proved that the P-hexomino only packs the 5×5 rectangle uniquely, essentially by showing that large rectangles can always be packed with fewer than 6 unused squares, and that parts of the packing can be rotated.
George Sicherman also found unique solutions of packing polyominoes in cylinders:
n \ m | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | none | none | none | none | none | 4 ![]() 4
| none
| none
| 3 | ![]() 4 | ![]() ![]() none
| 4 | ![]() 6 ![]() 5
| 3 | ![]() 4 | ![]() none
| 4 | ![]() none
| none
| |
n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | none | none | none | 3 ![]() ![]() ![]() ![]() | 3 ![]() ![]() ![]() 4
| none
| none
| 3 | ![]() ![]() ![]() ![]() 4 | ![]() ![]() ![]() ![]() ![]() none
| 5
| none
| 3 | ![]() ![]() 3 | ![]() ![]() 4 ![]() ![]() ![]() ![]() ![]() ![]() 4 | ![]() ![]() 5 ![]() none
| 6
| 3 | ![]() 3 | ![]() ![]() 4 ![]() ![]() ![]() 5 | ![]() ![]() none
| 6 | ![]() 7 ![]() 7
| none
| 4 | ![]() none
| none
| 8 | ![]() |
n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | none | none | none | 3 ![]() ![]() ![]() | none | ||||||||||||
5 | none | none | none | 3 ![]() 4 ![]() ![]() ![]()
| 4 ![]() 6
| none
| 3 | ![]() none
| none
| 4 | ![]() ![]() ![]() ![]() ![]()
7
| 3 | ![]() ![]() none
| 4 | ![]() 4 | ![]() none
| |
George Sicherman also found unique solutions of packing polyominoes in triangles:
George Sicherman also found unique solutions of packing polyominoes in pyramids:
George Sicherman also found unique solutions of packing polyominoes in diamonds:
George Sicherman also found unique solutions of packing polyiamonds in triangles:
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/26/09.