| n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | none | none | 3   5 | none | 3 |   4 |   4 |    5   6 | none | 3 |   none | 5 |   none | 7 | none | none | 3 |  4     4 |   none | 6 |   8 | none | none | 6 |   6 |   6 |  8  (BZ) 7 |   11 |  12        (GS) 9 | none | 3 |   4 |   none | 10 |   12 |   14 |  (GS) 10 | 4 |   6 |   6 |    8   6 |   8 |   none | 15 |  (BZ) 11 | 4 |     none | 5 |  (GS) none | 12 |  (GS) none | none | 12 | none | 4 |   none | none | 13 |  (BZ) 16 |  (BZ) 18 |  (BZ) | 
| n \ m | 9 | 10 | 11 | 12 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 16  (GS) 10 | 17 |  (BZ) none | 11 | none | 19 |  (BZ) 21 |  (BZ) 12 | 18 |  (BZ) 17 |  (BZ) none | 27 |  (BZ) 28  (BZ) | 
| n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | none | none | 3    (GS) | 3    4      
 6 | none | 3 |     3 |  4       4 |        5     4 |    5  6     7 | none | 3 |   3 |      4      
 4 |     5 |  6   6 |  8   8 | none | 3 |          4   none | 6 |     6 |   none | 8 |      10    (all GS) 9 | 3 |   3 |    4   4 |    5  6   none | 8 |   10 |   9 |  (GS) 11  (BZ) 10 | 3 |     4 |    5   5 |  6      
 6 |     8 |  9   10 |  (BZ) 11  (BZ) none | 11 | 3 |     4 |      5   5 |    6   none | 8 |  (GS) 9  (GS) 10  (GS) none | 14 |    (all BZ) 12 | 4 |     5 |        (GS) 6     7 |  8     10 |    (all GS) 10 |  (GS) 11  (GS) none | none |  | 
| n \ m | 9 | 10 | 11 | 12 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 11  (BZ) 12  (BZ) 10 | 11 |    (all BZ) 14 |  (BZ) 16    
 11 | 16 |  (BZ) 16 |  (BZ) 17  (BZ) 18    (BZ) 16 |  (BZ) 17  (BZ) 20  (BZ) 12 | 16 |  (BZ) 18  (BZ) 16 |    (BZ) none | 20 |    (all BZ) | 
| n \ m | 3 | 4 | 5 | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | none | none | 3       6 | none | 3 |     3 |              4         7 | 3 |   3 |          
 4   3 |    4            
 5   8 | none | 3 |        4     3 |  4      5   9 | 3 |        
 3 |  4          
 4 |    5      6     10 | 3 |         4 |    5   4 |    5   6                 11 | 3 |        4             3 |  4          5        6   5 |    6      7   12 | 3 |  4   4 |  5  6     6 |  (GS) 8  (GS) | 
| n \ m | 6 | 7 | 8 | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 6 | 3    4        
 
 
 7 | 4 |      
 5      6   5 |    6      7   8 | 4 |  6         6 |    
 7     7 |      8          
 9 | 6 |     7 |    8       8 |      (all GS) 9  (GS) 10  (GS) 10 | 6 |          7    8         6 |  (GS) 7  (GS) 8      (all GS) 9  (GS) 8 |  (GS) 9  (GS) 10      (all GS) 11 | 6 |  (GS) 8      
 8 |      (all GS) 9    (all GS) 9 |  (GS) 10    (all GS) 12 | 9 |  (GS) 10  (GS) 8 |  (GS) 10    (all GS) 12 |  (GS) | 
| Pentominoes | 3   |   | 5   | 6   | 7   | 11   | 13   | 
| 15   | 17   |   | 21   | 27   | 
| Hexominoes | 3   |   |   |   |   |   |   | 5   |   |   | 6   | 7   | 9   |   |   | 
| 10   | 11   |   |   | 14   | 16   | 17   | 
| Heptominoes | 3   |   |   |   |   |   |   |   |   |   |   |   |   |   | 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 
| 4   |   |   | 5   |   |   |   |   |   |   |   |   |   |   |   |   | 
| 6   |   |   |   | 7   |   |   |   |   |   |   |   | 
|   |   | 8   |   | 9   |   |   |   |   |   |   | 10   | 
Berend van der Zwaag proved that the P-hexomino only packs the 5×5 rectangle uniquely, essentially by showing that large rectangles can always be packed with fewer than 6 unused squares, and that parts of the packing can be rotated.
George Sicherman also found unique solutions of packing polyominoes in cylinders:
| n \ m | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | none | none | none | none | none | 4   4 | none | none | 3 |   4 |     none | 4 |  6   5 | 3 |   4 |   none | 4 |   none | none |  | 
| n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | none | none | none | 3         | 3       4 | none | none | 3 |         4 |           none | 5 | none | 3 |     3 |    4             4 |    5   none | 6 | 3 |   3 |    4       5 |     none | 6 |  7   7 | none | 4 |   none | none | 8 |   | 
| n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | none | none | none | 3       | none | ||||||||||||
| 5 | none | none | none | 3  4      
 | 4   6 | none | 3 |   none | none | 4 |          
 7 | 3 |     none | 4 |   4 |   none |  | 
George Sicherman also found unique solutions of packing polyominoes in triangles:
 
  
 
 
  
  
  
  
  
  (BZ)
(BZ)  (BZ)
(BZ)  (BZ)
(BZ)
 
  
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
  
 
George Sicherman also found unique solutions of packing polyominoes in pyramids:
 
 
 
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
 
 
  
   
  
  
  
 
 
  
  
 
George Sicherman also found unique solutions of packing polyominoes in diamonds:

 
  
  
  
  
 
 
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
 
George Sicherman also found unique solutions of packing polyiamonds in triangles:
 
  
 
 
  
  
  
  
 
 
  
  
  
  
  
  
  
  
 
 
  
  
  
  
  
  
  
  
 
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/26/09.