n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | none | none | 3
5
| none
| 3
| 4
| 4 | 5 6
| none
| 3
| none
| 5
| none
| 7
| none
| none
| 3 | 4 4
| none
| 6
| 8
| none
| none
| 6
| 6
| 6 | 8 (BZ) 7
| 11 | 12 (GS) 9
| none
| 3
| 4
| none
| 10
| 12
| 14 (GS)
| 10
| 4
| 6
| 6 | 8 6
| 8
| none
| 15 (BZ)
| 11
| 4
| none
| 5 (GS)
| none
| 12 (GS)
| none
| none
| 12
| none
| 4
| none
| none
| 13 (BZ)
| 16 (BZ)
| 18 (BZ)
| |
n \ m | 9 | 10 | 11 | 12 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 16 (GS)
10
| 17 (BZ)
| none
| 11
| none
| 19 (BZ)
| 21 (BZ)
| 12
| 18 (BZ)
| 17 (BZ)
| none
| 27 (BZ) | 28 (BZ) |
n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | none | none | 3 (GS) | 3 4
6
| none
| 3
| 3 | 4 4 | 5 4 | 5 6 7
| none
| 3
| 3 | 4
4
| 5 | 6 6 | 8 8
| none
| 3 | 4 none
| 6
| 6
| none
| 8 | 10 (all GS) 9
| 3
| 3 | 4 4 | 5 6 none
| 8
| 10
| 9 (GS) | 11 (BZ) 10
| 3
| 4 | 5 5 | 6
6
| 8 | 9 10 (BZ) | 11 (BZ) none
| 11
| 3
| 4 | 5 5 | 6 none
| 8 (GS) | 9 (GS) 10 (GS) none
| 14 (all BZ)
| 12
| 4
| 5 (GS) | 6 7 | 8 10 (all GS)
| 10 (GS) | 11 (GS) none
| none
| |
n \ m | 9 | 10 | 11 | 12 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9 | 11 (BZ) 12 (BZ) 10
| 11 (all BZ)
| 14 (BZ) | 16 (all BZ) 11
| 16 (BZ)
| 16 (BZ) | 17 (BZ) 18 (BZ) 16 (BZ) | 17 (BZ) 20 (BZ) 12
| 16 (BZ) | 18 (BZ) 16 (BZ)
| none
| 20 (all BZ)
| |
n \ m | 3 | 4 | 5 | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | none | none | 3
6
| none
| 3
| 3 | 4 7
| 3
| 3 |
4 3 | 4
5 8
| none
| 3 | 4 3 | 4 5 9
| 3 |
3 | 4
4 | 5 6 10
| 3
| 4 | 5 4 | 5 6 11
| 3 | 4 3 | 4 5 6 5 | 6 7 12
| 3 | 4 4 | 5 6 6 (GS) | 8 (GS) |
n \ m | 6 | 7 | 8 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 | 3 4
7
| 4 |
5 6 5 | 6 7 8
| 4 | 6 6 |
7 7 | 8
9
| 6
| 7 | 8 8 (all GS) | 9 (GS) 10 (GS) 10
| 6 | 7 8 6 (GS) | 7 (GS) 8 (all GS) 9 (GS) 8 (GS) | 9 (GS) 10 (all GS) 11
| 6 (GS) | 8 (all GS) 8 (all GS) | 9 (all GS) 9 (GS) | 10 (all GS) 12
| 9 (GS) | 10 (GS) 8 (GS) | 10 (all GS) 12 (GS)
| |
Pentominoes | 3 | 5 | 6 | 7 | 11 | 13 |
15 | 17 | 21 | 27 |
Hexominoes | 3 | 5 | 6 | 7 | 9 |
10 | 11 | 14 | 16 | 17 |
Heptominoes | 3 |
4 | 5 |
6 | 7 |
8 | 9 | 10 |
Berend van der Zwaag proved that the P-hexomino only packs the 5×5 rectangle uniquely, essentially by showing that large rectangles can always be packed with fewer than 6 unused squares, and that parts of the packing can be rotated.
George Sicherman also found unique solutions of packing polyominoes in cylinders:
n \ m | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | none | none | none | none | none | 4
4
| none
| none
| 3
| 4
| none
| 4 | 6 5
| 3
| 4
| none
| 4
| none
| none
| |
n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | none | none | none | 3 | 3
4
| none
| none
| 3
| 4
| none
| 5
| none
| 3
| 3 | 4 4 | 5 none
| 6
| 3
| 3 | 4 5
| none
| 6 | 7 7
| none
| 4
| none
| none
| 8
| |
n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | none | none | none | 3 | none | ||||||||||||
5 | none | none | none | 3 4
| 4
6
| none
| 3
| none
| none
| 4 |
7
| 3
| none
| 4
| 4
| none
| |
George Sicherman also found unique solutions of packing polyominoes in triangles:
George Sicherman also found unique solutions of packing polyominoes in pyramids:
George Sicherman also found unique solutions of packing polyominoes in diamonds:
George Sicherman also found unique solutions of packing polyiamonds in triangles:
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/26/09.