| n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | none | none | 3
5
| none
| 3 |
4 |
4 | ![]() 5
6
| none
| 3 |
none
| 5 |
none
| 7
| none
| none
| 3 | ![]() 4
4 |
none
| 6 |
8
| none
| none
| 6 |
6 |
6 | ![]() 8 (BZ)
7 |
11 | ![]() 12
(GS)
9
| none
| 3 |
4 |
none
| 10 |
12 |
14 | (GS)
10
| 4 |
6 |
6 | ![]() 8
6 |
8 |
none
| 15 | (BZ)
11
| 4 |
none
| 5 | (GS)
none
| 12 | (GS)
none
| none
| 12
| none
| 4 |
none
| none
| 13 | (BZ)
16 | (BZ)
18 | (BZ)
|
| n \ m | 9 | 10 | 11 | 12 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 16 (GS)
10
| 17 | (BZ)
none
| 11
| none
| 19 | (BZ)
21 | (BZ)
12
| 18 | (BZ)
17 | (BZ)
none
| 27 | (BZ)28 (BZ)
|
| n \ m | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | none | none | 3 (GS)
| 3 ![]() 4 ![]()
6
| none
| 3 |
3 | ![]() 4
4 | ![]() 5
4 | ![]() 5 ![]() 6
7
| none
| 3 |
3 | ![]() 4 ![]()
4 |
5 | ![]() 6
6 | ![]() 8
8
| none
| 3 | ![]() 4
none
| 6 |
6 |
none
| 8 | ![]() 10 (all GS)
9
| 3 |
3 | ![]() 4
4 | ![]() 5 ![]() 6
none
| 8 |
10 |
9 | (GS)11 (BZ)
10
| 3 |
4 | ![]() 5
5 | ![]() 6 ![]()
6 |
8 | ![]() 9
10 | (BZ)11 (BZ)
none
| 11
| 3 |
4 | ![]() 5
5 | ![]() 6
none
| 8 | (GS)9 (GS)10 (GS)
none
| 14 | (all BZ)
12
| 4 |
5 | (GS)6
7 | ![]() 8
10 | (all GS)
10 | (GS)11 (GS)
none
| none
| |
| n \ m | 9 | 10 | 11 | 12 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 11 (BZ)12 (BZ)
10
| 11 | (all BZ)
14 | (BZ)16 ![]()
11
| 16 | (BZ)
16 | (BZ)17 (BZ)18 (BZ)
16 | (BZ)17 (BZ)20 (BZ)
12
| 16 | (BZ)18 (BZ)
16 | (BZ)
none
| 20 | (all BZ)
|
| n \ m | 3 | 4 | 5 | ||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | none | none | 3
6
| none
| 3 |
3 | ![]() 4
7
| 3 |
3 | ![]()
4
3 | ![]() 4 ![]()
5
8
| none
| 3 | ![]() 4
3 | ![]() 4 ![]() 5
9
| 3 | ![]()
3 | ![]() 4 ![]()
4 | ![]() 5 ![]() 6
10
| 3 |
4 | ![]() 5
4 | ![]() 5 6
11
| 3 | ![]() 4
3 | ![]() 4 ![]() 5 ![]() 6
5 | ![]() 6 ![]() 7
12
| 3 | ![]() 4
4 | ![]() 5 ![]() 6
6 | (GS)8 (GS)
|
| n \ m | 6 | 7 | 8 | |||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 6 | 3 ![]() 4 ![]()
7
| 4 | ![]()
5 ![]() 6
5 | ![]() 6 ![]() 7
8
| 4 | ![]() 6
6 | ![]()
7
7 | ![]() 8 ![]()
9
| 6 |
7 | ![]() 8
8 | (all GS)9 (GS)10 (GS)
10
| 6 | ![]() 7 ![]() 8
6 | (GS)7 (GS)8 (all GS)9 (GS)
8 | (GS)9 (GS)10 (all GS)
11
| 6 | (GS)8 ![]()
8 | (all GS)9 (all GS)
9 | (GS)10 (all GS)
12
| 9 | (GS)10 (GS)
8 | (GS)10 (all GS)
12 | (GS)
|
| Pentominoes | 3
|
| 5
| 6
| 7
| 11
| 13
|
15
| 17
|
| 21
| 27
|
| Hexominoes | 3
|
|
|
|
|
|
| 5
|
|
| 6
| 7
| 9
|
|
|
10
| 11
|
|
| 14
| 16
| 17
|
| Heptominoes | 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4
|
|
| 5
|
|
|
|
|
|
|
|
|
|
|
|
|
6
|
|
|
| 7
|
|
|
|
|
|
|
|
|
| 8
|
| 9
|
|
|
|
|
|
| 10
|
Berend van der Zwaag proved that the P-hexomino only packs the 5×5 rectangle uniquely, essentially by showing that large rectangles can always be packed with fewer than 6 unused squares, and that parts of the packing can be rotated.
George Sicherman also found unique solutions of packing polyominoes in cylinders:
| n \ m | 3 | 4 | 5 | 6 | 7 | 8 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | none | none | none | none | none | 4
4
| none
| none
| 3 |
4 |
none
| 4 | ![]() 6
5
| 3 |
4 |
none
| 4 |
none
| none
| |
| n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | none | none | none | 3
| 3
4
| none
| none
| 3 |
4 |
none
| 5
| none
| 3 |
3 | ![]() 4
4 | ![]() 5
none
| 6
| 3 |
3 | ![]() 4
5 |
none
| 6 | ![]() 7
7
| none
| 4 |
none
| none
| 8 |
|
| n \ m | 3 | 4 | 5 | 6 | 7 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | none | none | none | 3
| none | ||||||||||||
| 5 | none | none | none | 3 ![]() 4 ![]()
| 4
6
| none
| 3 |
none
| none
| 4 | ![]()
7
| 3 |
none
| 4 |
4 |
none
| |
George Sicherman also found unique solutions of packing polyominoes in triangles:

(BZ)
(BZ)
(BZ)


George Sicherman also found unique solutions of packing polyominoes in pyramids:




George Sicherman also found unique solutions of packing polyominoes in diamonds:





George Sicherman also found unique solutions of packing polyiamonds in triangles:


If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/26/09.