1. Given a graph, we can count how many ways there are to eliminate 1 vertex at a time (along with any incident edges) and keep the graph connected. For a given integer n, is there a graph that can be eliminated in exactly n ways, and if so, what is the smallest such graph?
2. If instead we eliminate edges one at a time, so as to not disconnect the graph (except for isolated vertices), what are the smallest graphs that can be eliminated in exactly n ways?
3. A Hamiltonian path is a path that visits all the vertices of a graph exactly once. For a given integer n, what is the smallest graph with exactly n Hamiltonian paths? We count a path and its reverse as the same path.
4. A Hamiltonian cycle is a cycle that visits all the vertices of a graph exactly once. For a given integer n, what is the smallest graph with exactly n Hamiltonian cycles? We count a cycle and all of its rotations and reflections as the same cycle.
Andrew Bayly found the vertex elimination number of complete graphs (v!), cycle graphs (v × 2v–2), star graphs (2 × (v–1)!), and path graphs (2v–1) with v vertices.
Andrew Bayly pointed out that all vertex elimination numbers are even, except 1. Joe DeVincentis pointed out that all graphs with 3 or more vertices that don't contain a triangle have vertex elimination numbers that are divisibly by 4.
Jon Palin used a computer program to search all connected graphs with 7 or fewer vertices. His results can be found here.
Here are the smallest graphs that can be vertex-eliminated in exactly n ways:
1![]() | 2![]() | 4![]() | 6![]() | 8![]() | 12![]() | 14![]() | 16![]() | 20![]() | 24![]() |
28![]() | 30![]() (JD) | 32![]() (AB) | 36![]() (JD) | 40![]() (JD) | 44![]() (JD) | 48![]() (JD) |
50![]() (JD) | 52![]() (JD) | 56![]() (JD) | 60![]() (JD) | 62![]() (JD) | 64![]() (AB) | 66![]() (JD) | 72![]() (JD) |
76![]() (JD) | 80![]() (JD) | 82![]() (JD) | 84![]() (JD) | 92![]() (JD) | 96![]() (JD) | 104![]() (JD) | 108![]() (JD) |
112![]() (JD) | 116![]() (JD) | 120![]() (JD) | 124![]() (JD) | 126![]() (JD) | 128![]() (JD) |
Jeremy Galvagni found the edge elimination number of path graphs (2v–2) with v vertices.
Joe DeVincentis found the edge elimination numbers of cycle graphs (v × 2v–2) and star graphs ((v–1)!) with v vertices.
Here are the smallest known graphs that can be edge-eliminated in exactly n ways:
1![]() | 2![]() | 4![]() | 6![]() | 8![]() | 14![]() | 16![]() | 20![]() | 24![]() |
30![]() | 32![]() (JD) | 36![]() (JD) | 40![]() (JD) | 50![]() (JD) | 56![]() (JD) |
60![]() (JD) | 62![]() (JD) | 64![]() (JD) | 66![]() (JD) | 76![]() (JD) | 82![]() (JD) |
92![]() (JD) | 96![]() (JD) | 108![]() (JD) | 112![]() (JD) | 120![]() (JD) | 126![]() (JD) | 128![]() (JD) |
Jeremy Galvagni found the Hamiltonian path number of complete graphs (v!/2) and cycle graphs (v) with v vertices.
Mark Mammel found the smallest graphs for n≤27 by computer.
Here are the smallest graphs that have exactly n Hamiltonian paths:
0![]() | 1![]() | 2![]() | 3![]() | 4![]() | 5![]() | 6![]() | 7![]() | 8![]() (JG) | 9![]() (JG) | 10![]() (JG) |
11![]() (JG) | 12![]() (JG) | 13![]() (MM) | 14![]() (MM) | 15![]() (MM) | 16![]() (MM) | 17![]() (MM) | 18![]() (MM) | 19![]() (MM) |
20![]() (MM) | 21![]() (MM) | 22![]() (MM) | 23![]() (MM) | 24![]() (MM) | 25![]() (MM) | 26![]() (MM) | 27![]() (MM) |
28![]() (JT) | 29![]() (JT) | 30![]() (JT) | 31![]() (JT) | 32![]() (JT) | 33![]() (JT) | 34![]() (JT) | 35![]() (JT) |
36![]() (JT) | 37![]() (JT) | 38![]() (JT) | 39![]() (JT) | 40![]() (JT) | 41![]() (JT) | 42![]() (JT) | 43![]() (JT) |
44![]() (JT) | 45![]() (JT) | 46![]() (JT) | 47![]() (JT) | 48![]() (JT) | 49![]() (JT) | 50![]() (JT) | 51![]() (JT) |
52![]() (JT) | 53![]() (JT) | 54![]() (JT) | 55![]() (JT) | 56![]() (JT) | 57![]() (JT) | 58![]() (JT) | 59![]() (JT) |
60![]() (JT) | 61![]() (JT) | 62![]() (JT) | 63![]() (JT) | 64![]() (JT) | 65![]() (JT) | 66![]() (JT) | 67![]() (JT) |
68![]() (JT) | 69![]() (JT) | 70![]() (JT) | 71![]() (JT) | 72![]() (JT) | 73![]() (JT) | 74![]() (JT) | 75![]() (JT) |
76![]() (JT) | 77![]() (JT) | 78![]() (JT) | 79![]() (JT) | 80![]() (JT) | 81![]() (JT) | 82![]() (JT) | 83![]() (JT) |
84![]() (JT) | 85![]() (JT) | 86![]() (JT) | 87![]() (JT) | 88![]() (JT) | 89![]() (JT) | 90![]() (JT) | 91![]() (JT) |
92![]() (JT) | 93![]() (JT) | 94![]() (JT) | 95![]() (JT) | 96![]() (JT) | 97![]() (JT) | 98![]() (JT) | 99![]() (JT) | 100![]() (JT) |
Jeremy Galvagni found the Hamiltonian cycle number of complete graphs ((v–1)!/2) with v vertices.
Andrew Bayly found that the wheel graph with v vertices has v–1 Hamiltonian cycles, so all positive integers are the Hamiltonian cycle number of some graph.
Mark Mammel found the smallest graphs for n≤25 by computer.
Jeremy Tan found the smallest graphs for 26≤n≤40 by computer. In 2014, he extended this to n≤88. He also computed that 7-vertex graphs can have these numbers of Hamiltonian cycles: 0-12, 14-20, 22-24, 26-28, 30, 32-34, 36, 38, 40, 45, 48, 52, 60, 62, 70, 72, 76, 80, 90, 108, 120, 144, 168, 240 and 360.
In 2018, Johan de Ruiter found that 8-vertex graphs can have these numbers of Hamilton cycles: 0-88, 90, 92-106, 108-116, 118, 120, 122-124, 126, 128-136, 138-140, 142, 144-150, 152-153, 156, 158, 160, 162, 164-166, 168-169, 172, 174, 176-177, 180, 183-184, 186, 188, 192, 194, 198, 200, 204, 208, 210, 212, 214, 216, 219-220, 222-223, 228, 230-232, 240, 245, 248, 252, 260, 264, 266, 268, 270, 276, 284, 292, 296, 298, 300, 308, 310, 312, 320, 323-324, 328, 336, 340, 348, 354, 360, 366, 384, 390, 408, 430, 432, 444, 456, 458, 476, 496, 504, 508, 576, 582, 636, 660, 696, 720, 744, 816, 912, 984, 1200, 1320, 1800, 2520. He also sent lists for n=9 and n=10.
Here are the smallest known graphs that have exactly n Hamiltonian cycles:
0![]() | 1![]() | 2![]() | 3![]() | 4![]() (AB) | 5![]() (MM) | 6![]() (MM) | 7![]() (MM) | 8![]() (MM) | 9![]() (MM) | 10![]() (MM) |
11![]() (MM) | 12![]() (MM) | 13![]() (MM) | 14![]() (MM) | 15![]() (MM) | 16![]() (MM) | 17![]() (MM) | 18![]() (MM) |
19![]() (MM) | 20![]() (MM) | 21![]() (MM) | 22![]() (MM) | 23![]() (MM) | 24![]() (MM) | 25![]() (MM) |
26![]() (JT) | 27![]() (JT) | 28![]() (JT) | 29![]() (JT) | 30![]() (JT) | 31![]() (JT) | 32![]() (JT) |
33![]() (JT) | 34![]() (JT) | 35![]() (JT) | 36![]() (JT) | 37![]() (JT) | 38![]() (JT) | 39![]() (JT) |
40![]() (JT) | 41![]() (JT) | 42![]() (JT) | 43![]() (JT) | 44![]() (JT) | 45![]() (JT) | 46![]() (JT) |
47![]() (JT) | 48![]() (JT) | 49![]() (JT) | 50![]() (JT) | 51![]() (JT) | 52![]() (JT) | 53![]() (JT) |
54![]() (JT) | 55![]() (JT) | 56![]() (JT) | 57![]() (JT) | 58![]() (JT) | 59![]() (JT) | 60![]() (JT) |
61![]() (JT) | 62![]() (JT) | 63![]() (JT) | 64![]() (JT) | 65![]() (JT) | 66![]() (JT) | 67![]() (JT) |
68![]() (JT) | 69![]() (JT) | 70![]() (JT) | 71![]() (JT) | 72![]() (JT) | 73![]() (JT) | 74![]() (JT) |
75![]() (JT) | 76![]() (JT) | 77![]() (JT) | 78![]() (JT) | 79![]() (JT) | 80![]() (JT) | 81![]() (JT) |
82![]() (JT) | 83![]() (JT) | 84![]() (JT) | 85![]() (JT) | 86![]() (JT) | 87![]() (JT) | 88![]() (JT) |
89![]() (JT) | 90![]() (JT) | 91![]() (JT) | 92![]() (JT) | 93![]() (JT) | 94![]() (JT) | 95![]() (JT) |
96![]() (JT) | 97![]() (JT) | 98![]() (JT) | 99![]() (JT) | 100![]() (JT) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 1/5/19.