{1}![]() |
{1}![]() | {2}![]() | {1,2}![]() |
{1}![]() | {1,2}![]() | {3}![]() | {1,3}![]() |
{1}![]() (George Sicherman) | {2}![]() | {1,2}![]() | {1,3}![]() | {1,2,3}![]() | {4}![]() | {1,4}![]() |
{1}![]() (George Sicherman) | {1,2}![]() | {1,3}![]() | {1,2,3}![]() | {1,4}![]() (George Sicherman) |
{1,2,4}![]() (George Sicherman) | {1,3,4}![]() | {1,2,3,4}![]() | {5}![]() | {1,5}![]() |
{2}![]() | {1,2}![]() | {3}![]() | {1,3}![]() | {1,2,3}![]() | {1,4}![]() | {2,4}![]() | {1,2,4}![]() | {1,3,4}![]() |
{2,3,4}![]() (Joe DeVincentis) | {1,2,3,4}![]() | {1,5}![]() | {1,2,5}![]() (George Sicherman) | {1,3,5}![]() | {1,2,3,5}![]() |
{1,4,5}![]() | {1,2,4,5}![]() | {1,3,4,5}![]() | {1,2,3,4,5}![]() | {6}![]() | {1,6}![]() |
{1,2}![]() (George Sicherman) | {1,3}![]() | {1,2,3}![]() | {1,4}![]() (Torsten Ueckerdt) | {1,2,4}![]() (George Sicherman) | {1,3,4}![]() |
{1,2,3,4}![]() | {1,5}![]() | {1,2,5}![]() | {1,3,5}![]() (Berend van der Zwaag) | {1,2,3,5}![]() | {1,4,5}![]() (Berend van der Zwaag) | {1,2,4,5}![]() | {1,3,4,5}![]() (George Sicherman) |
{1,2,3,4,5}![]() | {1,6}![]() (George Sicherman) | {1,2,6}![]() (Berend van der Zwaag) | {1,3,6}![]() | {1,2,3,6}![]() (George Sicherman) | {1,4,6}![]() (Joe DeVincentis) | {1,2,4,6}![]() (George Sicherman) |
{1,3,4,6}![]() | {1,2,3,4,6}![]() | {1,5,6}![]() | {1,2,5,6}![]() | {1,3,5,6}![]() (George Sicherman) | {1,2,3,5,6}![]() |
{1,4,5,6}![]() (George Sicherman) | {1,2,4,5,6}![]() | {1,3,4,5,6}![]() (George Sicherman) | {1,2,3,4,5,6}![]() | {7}![]() | {1,7}![]() |
{2}![]() (George Sicherman) | {1,2}![]() (George Sicherman) | {1,3}![]() (Joe DeVincentis) | {2,3}![]() | {1,2,3}![]() | {4}![]() | {1,4}![]() | {2,4}![]() (George Sicherman) |
{1,2,4}![]() | {1,3,4}![]() | {2,3,4}![]() | {1,2,3,4}![]() | {1,5}![]() (Joe DeVincentis) | {1,2,5}![]() (George Sicherman) | {1,3,5}![]() (George Sicherman) |
{2,3,5}![]() | {1,2,3,5}![]() | {1,4,5}![]() (George Sicherman) | {1,2,4,5}![]() | {1,3,4,5}![]() (George Sicherman) | {2,3,4,5}![]() | {1,2,3,4,5}![]() | {1,6}![]() | {2,6}![]() |
{1,2,6}![]() | {1,3,6}![]() (George Sicherman) | {2,3,6}![]() (Joe DeVincentis) | {1,2,3,6}![]() (George Sicherman) | {1,4,6}![]() (George Sicherman) | {2,4,6}![]() | {1,2,4,6}![]() (George Sicherman) | {1,3,4,6}![]() (George Sicherman) |
{2,3,4,6}![]() (George Sicherman) | {1,2,3,4,6}![]() | {1,5,6}![]() (George Sicherman) | {1,2,5,6}![]() (George Sicherman) | {1,3,5,6}![]() (George Sicherman) | {2,3,5,6}![]() (George Sicherman) | {1,2,3,5,6}![]() | {1,4,5,6}![]() (George Sicherman) |
{1,2,4,5,6}![]() (George Sicherman) | {1,3,4,5,6}![]() (George Sicherman) | {2,3,4,5,6}![]() (George Sicherman) | {1,2,3,4,5,6}![]() (George Sicherman) | {1,7}![]() | {1,2,7}![]() (George Sicherman) | {1,3,7}![]() (George Sicherman) | {1,2,3,7}![]() (George Sicherman) |
{1,4,7}![]() | {1,2,4,7}![]() | {1,3,4,7}![]() (George Sicherman) | {1,2,3,4,7}![]() (George Sicherman) | {1,5,7}![]() (George Sicherman) | {1,2,5,7}![]() (George Sicherman) | {1,3,5,7}![]() (George Sicherman) |
{1,2,3,5,7}![]() | {1,4,5,7}![]() (George Sicherman) | {1,2,4,5,7}![]() (George Sicherman) | {1,3,4,5,7}![]() (George Sicherman) | {1,2,3,4,5,7}![]() (George Sicherman) | {1,6,7}![]() (George Sicherman) | {1,2,6,7}![]() | {1,3,6,7}![]() (George Sicherman) |
{1,2,3,6,7}![]() (George Sicherman) | {1,4,6,7}![]() (George Sicherman) | {1,2,4,6,7}![]() | {1,3,4,6,7}![]() (George Sicherman) | {1,2,3,4,6,7}![]() (George Sicherman) | {1,5,6,7}![]() (George Sicherman) |
{1,2,5,6,7}![]() (George Sicherman) | {1,3,5,6,7}![]() (George Sicherman) | {1,2,3,5,6,7}![]() | {1,4,5,6,7}![]() (George Sicherman) | {1,2,4,5,6,7}![]() (George Sicherman) | {1,3,4,5,6,7}![]() (George Sicherman) | {1,2,3,4,5,6,7}![]() (George Sicherman) | {8}![]() | {1,8}![]() |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/1/19.