Given such a total order, what is the smallest (in terms of area, then number of squares) tiling with that signature?
| 1 | 2 | 3 | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ![]() 1 | ||||||||||||
| 2 |
| ![]() 2 | |||||||||||
| 3 |
|
| none 3 | ||||||||||
| 4 |
|
|
| ||||||||||
| 5 |
|
|
| ||||||||||
| 6 |
|
|
| ||||||||||
| 7 |
|
|
| ||||||||||
| 8 |
|
|
| ||||||||||
| 9 |
|
|
| ||||||||||
| 10 |
|
|
| ||||||||||
| 11 |
|
|
| ||||||||||
| 12 |
|
|
| ||||||||||
| 4 | 5 | |||||||
|---|---|---|---|---|---|---|---|---|
| 4 | ![]() 4 | |||||||
| 5 |
| ![]() 5 (one sixth scale) (MM) | ||||||
| 6 |
|
| ||||||
| 7 |
|
| ||||||
| 8 |
|
| ||||||
| 9 |
|
| ||||||
| 10 |
|
| ||||||
| 11 |
|
| ||||||
| 12 |
|
|
| none 1>2>3 | none 1>3>2 | none 2>1>3 | ![]() 2>3>1 | ![]() 3>1>2 | ![]() 3>2>1 | none 1=2>3 | none 1=3>2 | ![]() 2=3>1 | none 1>2=3 | ![]() 2>1=3 | ![]() 3>1=2 | none 1=2=3 |
| none 1>2>4 | none 1>4>2 | none 2>1>4 | ![]() 2>4>1 |
![]() 4>1>2 | ![]() 4>2>1 |
| none 1=2>4 | none 1=4>2 | ![]() 2=4>1 | none 1>2=4 | none 2>1=4 | ![]() 4>1=2 | none 1=2=4 |
| none 1>3>4 | none 1>4>3 | ![]() 3>1>4 | ![]() 3>4>1 | none 4>1>3 | ![]() 4>3>1 |
| none 1=3>4 | none 1=4>3 | ![]() 3=4>1 | none 1>3=4 | ![]() 3>1=4 | ![]() 4>1=3 | none 1=3=4 |
![]() 2>3>4 | ![]() 2>4>3 | ![]() 3>2>4 | ![]() 3>4>2 | ![]() 4>2>3 (GS) | ![]() 4>3>2 | ![]() 2=3>4 | ![]() 2=4>3 | ![]() 3=4>2 | ![]() 2>3=4 | ![]() 3>2=4 | ![]() 4>2=3 | ![]() 2=3=4 |
| none 1>2>5 | none 1>5>2 | none 2>1>5 (JD) | ![]() 5>1>2 (one sixth scale) (JD) | ![]() 5>2>1, and with lots of 2's added, 2=5>1 and 2>5>1 (MM) |
| none 1=2>5 | none 1=5>2 | none 1>2=5 | none 2>1=5 (JD) | ![]() 5>1=2 (one sixth scale) (JD) | none 1=2=5 |
| none 1>3>5 | none 1>5>3 | ![]() 3>1>5 | ![]() 3>5>1 |
![]() 5>1>3 (one thirtieth scale) (JD) | ![]() 5>3>1 |
| none 1=3>5 | none 1=5>3 | ![]() 3=5>1 (GS) | none 1>3=5 | ![]() 3>1=5 | ![]() 5>1=3 (one sixth scale) (MM) | none 1=3=5 |
![]() 2>3>5 | ![]() 2>5>3 (one half scale) (MM) |
![]() 3>2>5 | ![]() 3>5>2 | ![]() 5>2>3 (GS) | ![]() 5>3>2 (GS) |
![]() 2=3>5 | ![]() 2=5>3 (GS) | ![]() 3=5>2 | ![]() 2>3=5 | ![]() 3>2=5 | ![]() 5>2=3 (GS) | ![]() 2=3=5 |
| none 1>4>5 (JD) | none 1>5>4 (JD) | none 4>1>5 (BH) | ![]() 4>5>1 (GS) | ![]() 5>1>4 (one thirtieth scale) (BH) |
![]() 5>4>1 (MM) | none 1=4>5 (JD) | none 1=5>4 (JD) | ![]() 4=5>1 (MM) |
| none 1>4=5 (JD) | ![]() 4>1=5 (JD) | ![]() 5>1=4 (one sixth scale) (JD) | none 1=4=5 (JD) |
![]() 2>4>5 (MM) |
![]() 2>5>4 (one half scale) (MM) |
![]() 4>2>5 (GS) | ![]() 4>5>2 (GS) | ![]() 5>2>4 (MM) | ![]() 5>4>2 (GS) |
![]() 2=4>5 (GS) | ![]() 2=5>4 (one half scale) (GS) | ![]() 4=5>2 (GS) | ![]() 2>4=5 | ![]() 4>2=5 | ![]() 5>2=4 | ![]() 2=4=5 (MM) |
![]() 3>4>5 (GS) | ![]() 3>5>4 | ![]() 4>3>5 | ![]() 4>5>3 | ![]() 5>3>4 (GS) | ![]() 5>4>3 (GS) |
![]() 3=4>5 | ![]() 3=5>4 | ![]() 4=5>3 (GS) | ![]() 3>4=5 | ![]() 4>3=5 | ![]() 5>3=4 | ![]() 3=4=5 (GS) |
| none 1>3>6 | none 1>6>3 | ![]() 3>1>6 (GS) | ![]() 3>6>1 (GS) | none 6>1>3 | ![]() 6>3>1 (one sixth scale) (JD) |
| none 1=3>6 | none 1=6>3 | ![]() 3=6>1 (one sixth scale) (JD) | none 1>3=6 | ![]() 3>1=6 (GS) | none 6>1=3 (JD) | none 1=3=6 |
![]() 2>3>6 | ![]() 3>2>6 | ![]() 3>6>2 | ![]() 6>3>2, and by adding 2's in the middle, 6>2=3, 6>2>3, 2=6>3, and 2>6>3 (one sixth scale) (JD) |
![]() 2=3>6 | ![]() 3>2=6 | ![]() 3=6>2, and by adding 2's in the middle, 2=3=6 and 2>3=6 (one twelfth scale) (JD) |
| none 1>4>6 | none 1>6>4 | ![]() 4>1>6 (MM) | ![]() 4>6>1 | none 6>1>4 (JD) | ![]() 6>4>1 (one sixth scale) (JD) |
| none 1=4>6 | none 1=6>4 | ![]() 4=6>1 (one sixth scale) (JD) | none 1>4=6 | ![]() 4>1=6 (GS) | none 6>1=4 (JD) | none 1=4=6 |
| none 2>4>6 (JD) | none 2>6>4 (JD) | ![]() 4>2>6 | ![]() 4>6>2 (GS) | none 6>2>4 (JD) | ![]() 6>4>2 (GS) |
![]() 2=4>6 (GS) | none 2=6>4 (JD) | ![]() 4=6>2 (GS) | none 2>4=6 (JD) | ![]() 4>2=6 | ![]() 6>2=4 (one half scale) (JD) | ![]() 2=4=6 (GS) |
![]() 3>4>6 | ![]() 3>6>4 (GS) | ![]() 4>3>6 | ![]() 4>6>3 (GS) | ![]() 6>3>4 (GS) | ![]() 6>4>3 (GS) |
![]() 3=4>6 | ![]() 3=6>4 (GS) | ![]() 4=6>3 (GS) | ![]() 3>4=6 | ![]() 4>3=6 | ![]() 6>3=4 (GS) | ![]() 3=4=6 (GS) |
| none 1>5>6 (JD) | none 1>6>5 (JD) | ![]() 5>1>6 (one thirtieth scale) (BH) | ![]() 5>6>1 (one sixth scale) (JD) | none 6>1>5 (BH) | ![]() 6>5>1 (one sixth scale) (MM) |
| none 1=5>6 (JD) | none 1=6>5 (JD) | ![]() 5=6>1 (one twelfth scale) (JD) | none 1>5=6 (JD) | ![]() 5>1=6 (one sixth scale) (MM) | none 6>1=5 (JD) | none 1=5=6 (JD) |
![]() 5>2>6 (GS) | ![]() 5>6>2 (GS) | ![]() 6>5>2 (one sixth scale) (JD) | ![]() 5>2=6 (GS) |
![]() 5=6>2, and with 2's added, 2=5=6, and 2>5=6 (one twelfth scale) (JD) | ![]() on both ends with lots of 2's between them 6>2=5 and 6>2>5 (one sixth scale) (JD) |
![]() on both ends with lots of 2's between them 2=6>5 and 2>6>5 (one sixth scale) (JD) | ![]() on both ends with lots of 2's between them 2=5>6 and 2>5>6 (one sixth scale) (JD) |
![]() 3>5>6 (GS) | ![]() 3>6>5 (GS) | ![]() 5>3>6 (GS) | ![]() 5>6>3 (GS) | ![]() 6>3>5 (MM) | ![]() 6>5>3 (JD) |
![]() 3=5>6 (GS) | ![]() 3=6>5 (GS) | ![]() 5=6>3 (GS) | ![]() 3>5=6 | ![]() 5>3=6 (GS) | ![]() 6>3=5 (GS) | ![]() 3=5=6 (GS) |
![]() 4>5>6 (GS) | ![]() 4>6>5 (GS) | ![]() 5>4>6 (GS) | ![]() 5>6>4 (GS) |
![]() 6>4>5 (GS) | ![]() 6>5>4 (GS) |
![]() 4=5>6 (MM) | ![]() 4=6>5 (JD) | ![]() 5=6>4 (GS) |
![]() 4>5=6 (GS) | ![]() 5>4=6 (GS) | ![]() 6>4=5 (GS) | ![]() 4=5=6 (GS) |
| none 1>2>3>4 | none 1>2>4>3 | none 1>3>2>4 | none 1>3>4>2 | none 1>4>2>3 | none 1>4>3>2 |
| none 2>1>3>4 | none 2>1>4>3 | ![]() 2>3>1>4 | ![]() 2>3>4>1 | none 2>4>1>3 | ![]() 2>4>3>1 |
| none 3>1>2>4 | none 3>1>4>2 | ![]() 3>2>1>4 | ![]() 3>2>4>1 | ![]() 3>4>1>2 | ![]() 3>4>2>1 |
| none 4>1>2>3 | none 4>1>3>2 | none 4>2>1>3 | ![]() 4>2>3>1 (MM) | ![]() 4>3>1>2 | ![]() 4>3>2>1 |
| none 1>2>3=4 | none 1>3>2=4 | none 1>4>2=3 | none 2>1>3=4 | ![]() 2>3>1=4 | ![]() 2>4>1=3 |
![]() 3>1>2=4 | ![]() 3>2>1=4 | ![]() 3>4>1=2 | none 4>1>2=3 | ![]() 4>2>1=3 (GS) | ![]() 4>3>1=2 (GS) |
| none 1>2=3>4 | none 1>2=4>3 | none 1>3=4>2 | none 2>1=3>4 (JD) | none 2>1=4>3 | ![]() 2>3=4>1 |
![]() 3>1=2>4 | ![]() 3>1=4>2 | ![]() 3>2=4>1 | none 4>1=2>3 | ![]() 4>1=3>2 | ![]() 4>2=3>1 |
| none 1=2>3>4 | none 1=2>4>3 | none 1=3>2>4 | none 1=3>4>2 | none 1=4>2>3 | none 1=4>3>2 |
![]() 2=3>1>4 | ![]() 2=3>4>1 | none 2=4>1>3 | ![]() 2=4>3>1 | ![]() 3=4>1>2 | ![]() 3=4>2>1 |
| none 1=2=3>4 (JD) | none 1=2=4>3 | none 1=3=4>2 (JD) | ![]() 2=3=4>1 | none 1=2>3=4 | none 1=3>2=4 (JD) | none 1=4>2=3 | ![]() 2=3>1=4 |
![]() 2=4>1=3 | ![]() 3=4>1=2 | none 1>2=3=4 | ![]() 2>1=3=4 | ![]() 3>1=2=4 | ![]() 4>1=2=3 | none 1=2=3=4 (JD) |
![]() 2>3>4>5 | ![]() 2>3>5>4 | ![]() 2>4>3>5 | ![]() 2>4>5>3 (one half scale) (GS) |
![]() 2>5>3>4 (one half scale) (MM) | ![]() 2>5>4>3 (one half scale) (GS) |
![]() 3>2>4>5 | ![]() 3>2>5>4 | ![]() 3>4>2>5 | ![]() 3>4>5>2 | ![]() 3>5>2>4 | ![]() 3>5>4>2 |
![]() 4>2>3>5 | ![]() 4>2>5>3 (GS) | ![]() 4>3>2>5 | ![]() 4>3>5>2 | ![]() 4>5>2>3 | ![]() 4>5>3>2 |
![]() 5>2>3>4 (GS) | ![]() 5>2>4>3 (GS) | ![]() 5>3>2>4 | ![]() 5>3>4>2 (GS) | ![]() 5>4>2>3 (GS) | ![]() 5>4>3>2 |
![]() 2>3>4=5 (GS) | ![]() 2>4>3=5 | ![]() 2>5>3=4 (GS) | ![]() 3>2>4=5 | ![]() 3>4>2=5 | ![]() 3>5>2=4 |
![]() 4>2>3=5 | ![]() 4>3>2=5 | ![]() 4>5>2=3 | ![]() 5>2>3=4 (GS) | ![]() 5>3>2=4 | ![]() 5>4>2=3 |
![]() 2>3=4>5 | ![]() 2>3=5>4 (MM) | ![]() 2>4=5>3 (GS) | ![]() 3>2=4>5 | ![]() 3>2=5>4 (GS) | ![]() 3>4=5>2 |
![]() 4>2=3>5 | ![]() 4>2=5>3 | ![]() 4>3=5>2 | ![]() 5>2=3>4 | ![]() 5>2=4>3 (GS) | ![]() 5>3=4>2 |
![]() 2=3>4>5 | ![]() 2=3>5>4 | ![]() 2=4>3>5 | ![]() 2=4>5>3 (one half scale) (GS) | ![]() 2=5>3>4 (GS) | ![]() 2=5>4>3 |
![]() 3=4>2>5 | ![]() 3=4>5>2 | ![]() 3=5>2>4 | ![]() 3=5>4>2 | ![]() 4=5>2>3 | ![]() 4=5>3>2 |
![]() 2=3=4>5 | ![]() 2=3=5>4 | ![]() 2=4=5>3 | ![]() 3=4=5>2 | ![]() 2=3>4=5 | ![]() 2=4>3=5 | ![]() 2=5>3=4 | ![]() 3=4>2=5 | ![]() 3=5>2=4 | ![]() 4=5>2=3 |
![]() 2>3=4=5 | ![]() 3>2=4=5 | ![]() 4>2=3=5 | ![]() 5>2=3=4 | ![]() 2=3=4=5 |
![]() 3>4>5>6 | ![]() 3>4>6>5 | ![]() 3>5>4>6 | ![]() 3>5>6>4 (GS) | ![]() 3>6>4>5 | ![]() 3>6>5>4 (GS) |
![]() 4>3>5>6 | ![]() 4>3>6>5 | ![]() 4>5>3>6 (GS) | ![]() 4>5>6>3 (GS) | ![]() 4>6>3>5 (GS) | ![]() 4>6>5>3 (GS) |
![]() 5>3>4>6 (GS) | ![]() 5>3>6>4 (GS) | ![]() 5>4>3>6 (GS) | ![]() 5>4>6>3 (GS) | ![]() 5>6>3>4 (GS) | ![]() 5>6>4>3 (GS) |
![]() 6>3>4>5 (GS) | ![]() 6>3>5>4 (GS) | ![]() 6>4>3>5 (GS) | ![]() 6>4>5>3 (GS) | ![]() 6>5>3>4 (GS) | ![]() 6>5>4>3 (GS) |
![]() 3>4>5=6 | ![]() 3>5>4=6 (GS) | ![]() 3>6>4=5 (GS) | ![]() 4>3>5=6 | ![]() 4>5>3=6 (GS) | ![]() 4>6>3=5 (GS) |
![]() 5>3>4=6 (GS) | ![]() 5>4>3=6 (GS) | ![]() 5>6>3=4 (GS) | ![]() 6>3>4=5 (GS) | ![]() 6>4>3=5 (GS) | ![]() 6>5>3=4 (GS) |
![]() 3>4=5>6 (GS) | ![]() 3>4=6>5 (GS) | ![]() 3>5=6>4 (GS) | ![]() 4>3=5>6 (GS) | ![]() 4>3=6>5 (GS) | ![]() 4>5=6>3 (GS) |
![]() 5>3=4>6 (GS) | ![]() 5>3=6>4 (GS) | ![]() 5>4=6>3 (GS) | ![]() 6>3=4>5 (GS) | ![]() 6>3=5>4 (GS) | ![]() 6>4=5>3 (GS) |
![]() 3=4>5>6 | ![]() 3=4>6>5 | ![]() 3=5>4>6 | ![]() 3=5>6>4 (GS) | ![]() 3=6>4>5 (GS) | ![]() 3=6>5>4 (GS) |
![]() 4=5>3>6 (GS) | ![]() 4=5>6>3 (GS) | ![]() 4=6>3>5 (GS) | ![]() 4=6>5>3 (GS) | ![]() 5=6>3>4 (GS) | ![]() 5=6>4>3 (MM) |
![]() 3=4=5>6 (GS) | ![]() 3=4=6>5 | ![]() 3=5=6>4 (GS) | ![]() 4=5=6>3 (GS) |
![]() 3=4>5=6 | ![]() 3=5>4=6 (GS) | ![]() 3=6>4=5 (GS) | ![]() 4=5>3=6 (GS) | ![]() 4=6>3=5 (GS) | ![]() 4=6>3=5 (GS) |
![]() 3>4=5=6 | ![]() 4>3=5=6 (GS) | ![]() 5>3=4=6 (GS) | ![]() 6>3=4=5 (GS) | ![]() 3=4=5=6 (GS) |
George Sicherman suggested the variant problem of looking for small square tilings of rectangles where the differently colored squares have equal area. Here are the best known results:
| m \ n | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 |
| ||||
| 2 |
|
| |||
| 3 | none |
| none | ||
| 4 | none |
| ![]() (GS) |
| |
| 5 | none | ? | ![]() (GS) |
| ![]() (one sixth scale) (MM) |
| 6 | none | none | ![]() (GS) | ![]() (GS) | ![]() (one third scale) (GS) |
| 7 | none | none | ? | ![]() (GS) | ? |
| 8 | none | none | ? |
| ? |
| 9 | none | none | ? | ![]() (GS) | ? |
| 10 | none | none | ![]() (one half scale) | ![]() (GS) | ? |
| 11 | none | none | ![]() (one half scale) | ![]() (GS) | ? |
| 12 | none | none | ? |
| ? |
{1,3,4}
| {2,3,4}
| {3,4,5}![]() (GS) | {2,3,6}![]() (GS) | {2,4,6}
| {3,4,6}![]() (GS) |
{3,5,6}![]() (GS) | {4,5,6}
| {3,4,7}![]() (GS) | {3,5,7}![]() (one half scale) (GS) |
{4,5,7}![]() (GS) | {3,6,7}![]() (one half scale) (GS) | {4,6,7}![]() (GS) |
{2,4,8}
| {3,4,8}![]() (GS) | {3,5,8}![]() (GS) |
{4,5,8}![]() (GS) | {4,6,8}![]() (GS) | {4,7,8}
|
{1,2,3,4}![]() (GS) | {2,3,4,5}![]() (GS) | {2,3,4,6}
| {2,3,5,6}![]() (GS) |
{1,4,5,6}![]() (GS) | {3,4,5,6}
| {2,3,4,7}![]() (GS) |
{2,4,5,7}
| {1,3,4,8}![]() (GS) |
{2,3,4,8}![]() (GS) | {2,4,6,8}
| {3,4,7,8}
|
{1,2,4,5,6}![]() (GS) | {1,3,4,5,6}![]() (GS) |
{1,2,3,4,8}![]() (GS) | {2,4,6,7,8}
|
{2,3,4,5,6,7}![]() (one half scale) (GS) | {1,2,3,4,5,6,7}![]() (one half scale) (GS) |
We also investigated what the answers to the original problem would be if adjacencies at corners counted:
| 1 | 2 | 3 | 4 | 5 | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ![]() 1 | |||||||||||||||||||
| 2 |
| ![]() 2 | ||||||||||||||||||
| 3 |
|
| ![]() 3 | |||||||||||||||||
| 4 |
|
|
| ? 4 | ||||||||||||||||
| 5 |
|
|
|
| ? 5 | |||||||||||||||
| 6 |
|
|
|
|
| |||||||||||||||
| 7 |
|
|
|
|
| |||||||||||||||
| 8 |
|
|
|
|
| |||||||||||||||
| 9 |
|
|
|
|
| |||||||||||||||
| 10 |
|
|
|
|
| |||||||||||||||
| 11 |
|
|
|
|
| |||||||||||||||
| 11 |
|
|
|
|
|
| 6 | 7 | |||||||
|---|---|---|---|---|---|---|---|---|
| 6 | ? 6 | |||||||
| 7 |
| ? 7 | ||||||
| 8 |
|
|
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 10/14/19.