Here smallest means minimal total, and among those, minimal maximum vertex label.
(Andrew Bayly) | (Andrew Bayly) |
(Jon Palin) |
(Jon Palin) | ||
(Jon Palin) | (George Sicherman) | (George Sicherman) |
(George Sicherman) | (George Sicherman) | (George Sicherman) |
The smallest labels for cycles with n vertices are shown below:
n | labels | author |
---|---|---|
3 | 0, 9, 16 | |
4 | 0, 0, 9, 16 | |
5 | 0, 1, 15, 21, 4 | Andrew Bayly |
6 | 0, 0, 1, 15, 21, 4 | |
7 | 0, 0, 1, 3, 22, 27, 9 | |
8 | 0, 0, 1, 8, 8, 17, 32, 4 | |
9 | 0, 0, 1, 8, 8, 17, 32, 32, 4 | George Sicherman |
10 | 0, 0, 1, 8, 28, 21, 60, 61, 39, 25 | George Sicherman |
11 | 0, 0, 1, 8, 8, 28, 21, 60, 61, 39, 25 | George Sicherman |
12 | 0, 0, 1, 3, 6, 43, 38, 62, 59, 5, 11, 25 | George Sicherman |
13 | 0, 0, 1, 3, 6, 10, 39, 61, 3, 22, 59, 85, 36 | George Sicherman |
14 | 0, 0, 1, 3, 13, 51, 49, 32, 4, 5, 20, 101, 95, 49 | George Sicherman |
15 | 0, 0, 1, 3, 6, 10, 26, 38, 11, 14, 67, 33, 88, 56, 169 | George Sicherman |
16 | 0, 0, 1, 3, 6, 10, 111, 58, 6, 19, 17, 83, 113, 112, 32, 49 | Alex Rower |
17 | 0, 0, 1, 3, 6, 10, 26, 55, 9, 16, 128, 128, 41, 8, 92, 104, 121 | Alex Rower |
18 | 0, 0, 1, 3, 6, 10, 15, 34, 2, 62, 19, 81, 63, 162, 162, 34, 135, 121 | Alex Rower |
The smallest labels for wheels with n vertices are shown below:
n | center | others | author |
---|---|---|---|
4 | 2 | 3362, 359, 482 | Jon Palin |
5 | 194 | 962, 62, 2, 482 | Jon Palin |
6 | 224 | 1712, 137, 32, 452, 2912 | Jon Palin |
7 | 144 | 3456, 25, 0, 256, 585, 640 | Jon Palin |
8 | 144 | 880, 81, 0, 256, 585, 5040, 7956 | Jon Palin |
9 | 260 | 701, 140, 29, 1340, 2141, 6140, 101, 524 | Jon Palin |
10 | 482 | 962, 194, 2, 47, 1634, 1282, 9122, 3874, 887 | Jon Palin |
11 | 212 | 364, 77, 44, 317, 2492, 1997, 1724, 877, 3884, 1157 | Jon Palin |
12 | 8 | 136, 188, 1928, 281, 248, 3473, 1288, 5768, 161, 568, 953 | George Sicherman |
The smallest labels for n-dimensional cubes are shown below:
n | labels | author |
---|---|---|
2 | 0, 0, 9, 16 | |
3 | 0, 0, 9, 16, 153, 72, 49, 576 | George Sicherman |
The smallest labels for complete graphs on n vertices are shown below:
n | labels | author |
---|---|---|
3 | 0, 9, 16 | |
4 | 2, 359, 482, 3362 | Jon Palin |
5 | 7442, 28658, 148583, 177458, 763442 | Jean-Louis Nicolas |
In 2019, Alex Rower found these grid graphs, prism graphs, and complete bipartite graphs:
m \ n | 2 | 3 | 4 | 5 |
---|---|---|---|---|
2 | 0 0 9 16 | |||
3 | 0 9 0 16 1 48 | 15 1 224 49 0 100 32 4 21 | ||
4 | 0 9 0 16 1 48 3 33 | 15 1 360 49 0 169 72 9 27 184 216 73 | 96 48 1 224 345 16 0 100 280 9 0 576 681 160 36 448 | |
5 | 3 33 1 48 0 16 0 9 121 135 | 1 24 552 168 57 232 561 64 297 400 0 144 84 16 180 | 0 1296 385 291 0 225 99 70 121 504 1345 1155 75 25 24 1 825 264 760 840 | 0 0 1 24 1201
576 49 120 76 824 385 15 241 600 2425 1215 1921 288 1081 75 306 783 1 2400 409 |
n | labels |
---|---|
3 | 12 52 69 157 204 372 |
4 | 0 0 9 16 576 49 72 153 |
5 | 0 4 12 13 36 324 252 109 516 160 |
6 | 0 4 96 48 33 16
64 152 433 528 256 105 |
m \ n | 2 | 3 | 4 | 5 |
---|---|---|---|---|
2 | 0, 9 0, 16 | |||
3 | 1, 49 0, 15, 120 | 0, 273, 768 16, 256, 1936 | ||
4 | 0, 144 0, 25, 81, 256 | 1, 961, 6241 0, 483, 1155, 13923 | 0, 906304, 3240000, 12503296 0, 921600, 3186225, 43956900 | |
5 | 9, 729 0, 55, 112, 567, 952 | 9, 8649, 56169 0, 4347, 10395, 42427, 125307 | ? | ? |
Alex Rower found the 2,5, 3,5 and 4,4 bipartite graphs above, and cycle and grid graphs for triangular, pentagonal, hexagonal, and octagonal numbers.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 6/25/23.