s = 1 + √2 | s = 3 + (9/4) √2 | s = 5 + (15/4) √2 | s = 6 (1 + √2) | s = 8 (1 + √2) |
s = 10 (1 + √2) | s = (41 + 33√2)/3 (Maurizio Morandi) | s = (138 + 105√2)/8 (Maurizio Morandi) | s = 17(1 + √2) (Maurizio Morandi) | s = (137 + 104√2)/6 (Maurizio Morandi) |
s = 26 + 20√2 (Maurizio Morandi) | s = (120 + 89√2)/4 (Maurizio Morandi) | s = (260 + 205√2)/8 (Maurizio Morandi) | s = (140 + 117√2)/4 (Maurizio Morandi) | s = (118 + 95√2)/3 (Maurizio Morandi) |
s = 1 | s = 3 | s = 5 | s = 7 | s = 9 |
s = 11 | s = 11(1 + √2)/2 (Maurizio Morandi) | s = (38 + 7√2)/3 (Maurizio Morandi) | s = (123 + 141√2)/17 (Maurizio Morandi) | s = 31 / √2 (Maurizio Morandi) |
s = 25 (Maurizio Morandi) | s = 4 + 17√2 (Maurizio Morandi) | s = (115 + 294√2)/17 (Maurizio Morandi) | s = (359 + 164√2)/17 (Maurizio Morandi) | s = (151 + 83√2)/7 (Maurizio Morandi) |
s = 1 / √(2+√2) (Andrew Bayly) | s = 24 – 16√2 | s = 39 – 26√2 | s = 13 (3√2 – 4) (Maurizio Morandi) | s = 17 (3√2 – 4) (Maurizio Morandi) |
s = 18 – 9√2 | s = 11(2 – √2) (Maurizio Morandi) | s = 13(2 – √2) (Maurizio Morandi) | s = 61(2 – √2)/4 (Maurizio Morandi) | s = 95(5 – 3√2)/7 (Maurizio Morandi) |
s = 79(2 – √2)/4 (Maurizio Morandi) | s = 31(√2 – 1) (Maurizio Morandi) | s = 34(√2 – 1) (Maurizio Morandi) | s = 38(√2 – 1) (Maurizio Morandi) | s = 102(3 – 2√2) (Maurizio Morandi) |
What are the smallest octagons that can contain n non-overlapping unit squares?
s = 1 / √(2+√2) (Andrew Bayly) | s = .8766+ (Maurizio Morandi) | s = 6 (3 – 2√2) | s = 2 / √(2+√2) |
s = 3 (√2 – 1) | s = 7 – 4√2 (Maurizio Morandi) | s = 1.4369+ (Maurizio Morandi) | s = 1.5733+ (Maurizio Morandi) |
s = 3 / √(2+√2) | s = √(2√2) (Maurizio Morandi) | s = 1.7533+ (Maurizio Morandi) | s = 5 (√2 – 1) |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 12/1/13.