Let D(d,n) be the minimum number of copies of digit d that are needed to make the number n. Can you find D(d,n) for small n? What's the largest n for which D(d,n)=k? What's the smallest n for which D(d,n)=k? Can you find any bounds on the function D(d,n)? For which digit d is D(d,n) usually the lowest?
Philippe Fondanaiche found many minimal solutions to the 2000 problem, and gave many of the values of D(d,n) for small n.
The shortest ways to make 2000 with copies of a single digit are:
(1+1)×(11–1)1+1+1 2222–222
((33+3)/3)3×(3–(3/3))
(44–4)×(4+4)–4×4
|
5×5×(55+5×5) (5+5)5/(5×(5+5)) (5+5)(5–5/5)/5 (5+5)5/(55–5) ((6+6+6)×666+6+6)/6 (EF)
(7×7+7/7)×(7×7–7–(7+7)/7)
(88–8)×(8+8+8+8/8)
(999+9/9)×(9+9)/9
|
n \ d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2/2 | 3/3 | 4/4 | 5/5 | 6/6 | 7/7 | 8/8 | 9/9 |
2 | 1+1 | 2 | (3+3)/3 | (4+4)/4 | (5+5)/5 | (6+6)/6 | (7+7)/7 | (8+8)/8 | (9+9)/9 |
3 | 1+1+1 | 2+(2/2) | 3 | 4–(4/4) | (5+5+5)/5 | (6+6+6)/6 | (7+7+7)/7 | (8+8+8)/8 | (9+9+9)/9 |
4 | 1+1+1+1 | 2+2 | 3+(3/3) | 4 | 5–(5/5) | 6–(6+6)/6 | 77/7–7 | 8×8/(8+8) | (9+9+9+9)/9 |
5 | 1+1+1+1+1 | 2+2+(2/2) | 3+3–(3/3) | 4+(4/4) | 5 | 6–(6)/6 | 7–(7+7)/7 | 8–(8+8+8)/8 | (99–9)/(9+9) |
6 | (1+1)(1+1+1) | 2+2+2 | 3+3 | 4+(4+4)/4 | 5+(5/5) | 6 | 7–(7/7) | 8–(8+8)/8 | (99+9)/(9+9) |
7 | 11–1–1–1–1 | 22/2–2–2 | 3+3+(3/3) | 4+4–(4/4) | 5+(5+5)/5 | 6+(6/6) | 7 | 8–(8/8) | 9–(9+9)/9 |
8 | 11–1–1–1 | 2(2+2) | 3×3–(3/3) | 4+4 | 5+(5+5+5)/5 | 6+(6+6)/6 | 7+(7/7) | 8 | 9–(9/9) |
9 | 11–1–1 | 22/2–2 | 3×3 | 4+4+(4/4) | 5+5–(5/5) | 6+(6+6+6)/6 | 7+(7+7)/7 | 8+(8/8) | 9 |
10 | 11–1 | (22–2)/2 | (33–3)/3 | (44–4)/4 | 5+5 | (66–6)/6 | (77–7)/7 | (88–8)/8 | 9+(9/9) |
11 | 11 | 22/2 | 33/3 | 44/4 | 55/5 | 66/6 | 77/7 | 88/8 | 99/9 |
12 | 11+1 | (22+2)/2 | 3×3+3 | 4+4+4 | (55+5)/5 | 6+6 | (77+7)/7 | (88+8)/8 | (99+9)/9 |
13 | 11+1+1 | 22/2+2 | 3×3+3+(3/3) | 4+4+4+(4/4) | (55+5+5)/5 | 6+6+(6/6) | 7+7–(7/7) | (88+8+8)/8 | (99+9+9)/9 |
14 | 11+1+1+1 | (2+2)2–2 | 33/3+3 | (44–4)/4+4 | 5+5+5–(5/5) | 6+6+(6+6)/6 | 7+7 | 8+8–(8+8)/8 | (99+9+9+9)/9 |
15 | 11+1+1+1+1 | 22+2–(2/2) | 3×3+3+3 | 44/4+4 | 5+5+5 | 6+6+(6+6+6)/6 | 7+7+(7/7) | 8+8–(8/8) | 9+9–(9+9+9)/9 |
16 | (1+1+1+1)1+1 | 22+2 | 33–(33/3) | 4×4 | 55/5+5 | (66–6)/6+6 | 7+7+(7+7)/7 | 8+8 | 9+9–(9+9)/9 |
17 | (1+1)(11–1–1)–1 | 22+2+(2/2) | 3×(3+3)–(3/3) | 4×4+(4/4) | (55+5)/5+5 | 66/6+6 | (77–7)/7+7 | 8+8+(8/8) | 9+9–(9/9) |
18 | (1+1)(11–1–1) | 22–2–2 | 3×(3+3) | 4×4+(4+4)/4 | (55+5+5)/5+5 | 6+6+6 | 77/7+7 | 8+8+(8+8)/8 | 9+9 |
19 | (1+1)(11–1)–1 | 22–2–(2/2) | 3×(3+3)+(3/3) | 4×4+4–(4/4) | 5×5–5–(5/5) | 6+6+6+(6/6) | (77+7)/7+7 | 88/8+8 | 9+9+(9/9) |
20 | (1+1)(11–1) | 22–2 | 33/3+3×3 | 4×4+4 | 5×5–5 | 6+6+6+(6+6)/6 | 7+7+7–(7/7) | (88+8)/8+8 | 99/9+9 |
21 | 11+11–1 | 22–(2/2) | 33–3–3 | 4×4+4+(4/4) | 5×5–5+(5/5) | (66+66–6)/6 | 7+7+7 | (88+88–8)/8 | (99+9)/9+9 |
22 | 11+11 | 22 | (33+33)/3 | (44+44)/4 | (55+55)/5 | (66+66)/6 | (77+77)/7 | (88+88)/8 | (99+99)/9 |
23 | 11+11+1 | 22+2/2 | 33–3–3/3 | (44+44+4)/4 | 5×5–(5+5)/5 | (66+66+6)/6 | (77+77+7)/7 | (88+88+8)/8 | (99+99+9)/9 |
24 | (11+1)(1+1) | 22+2 | 33–3 | 4×4+4+4 | 5×5–5/5 | 6+6+6+6 | 7×(77–7/7) | 8+8+8 | (99+99+9+9)/9 |
25 | (1+1+1+1+1)1+1 | 22+2+(2/2) | 33–3+3/3 | 4×4+4+4+4/4 | 5×5 | 6×6–66/6 | 77/7+7+7 | 8+8+8+8/8 | 9+9+9–(9+9)/9 |
26 | (11+1+1)(1+1) | 22+2+2 | 33–3/3 | 4×4+(44–4)/4 | 5×5+5/5 | 6×6–(66-6)/6 | (77+7)/7+7+7 | 8+8+8+(8+8)/8 | 9+9+9–9/9 |
27 | (1+1+1)1+1+1 | (2+2/2)2+2/2 | 33 | (4–4/4)4–4/4 | 5×5+(5+5)/5 | 66/(6+6)×6–6 | 7+7+7+7–7/7 | 88/8+8+8 | 9+9+9 |
28 | (1+1)(11+1+1+1) | 22+2+2+2 | 3^3+3/3 | (4+4)×4–4 | 5×5+(5+5+5)/5 | (66+66)/6+6 | 7+7+7+7 | (88+8)/8+8+8 | 9+9+9+9/9 |
29 | (1+1+1)(11–1)–1 | 22+2×(2+2)–2/2 | (33–3)–3/3 | 4×(4+4)–4+4/4 | 5×5+5–5/5 | 6×6–6–6/6 | 7+7+7+7+7/7 | (88+8+8)/8+8+8 | 9+9+9+(9+9)/9 |
30 | (11–1)(1+1+1) | 22+2×(2+2) | 33+3 | 4×(4+4)–(4+4)/4 | 5×5+5 | 6×6–6 | 7+7+7+7+(7+7)/7 | (88+88)/8+8 | (99+9)/9+9+9 |
The largest number we can make with n copies of d seems to be one of the following forms:
For d=1, 11111111 for n even and 111111111 for n odd. For d=2 or d=3, 22222. For d=4 through d=9, 4444.
Kit Vongmahadlek asked what the smallest number that could not be made with seven 7's was. This inspired Joe DeVincentis to crank these out for other values as well. The smallest numbers requiring n copies of d are:
n \ d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
4 | 4 | 5 | 5 | 6 | 3 | 3 | 3 | 3 | 3 |
5 | 5 | 7 | 13 | 13 | 8 | 9 | 16 | 5 | 4 |
6 | 7 | 27 | 40 | 23 | 18 | 15 | 23 | 21 | 14 |
7 | 17 | 29 | 46 | 78 | 38 | 50 | 30 | 29 | 24 |
8 | 41 | 149 | 130 | 98 | 83 | 87 | 131 | 149 | 43 |
9 | 76 | ? | ? | ? | ? | 160 | ? | ? | ? |
Philippe Fondanaiche asked whether 2000 could be made from 8 different digits in increasing order without using concatenation. Here are some solutions:
Luc Kumps points out that in the old four 4's puzzle, you need other symbols like "√" or "!" to make the numbers from 1-100.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 12/15/02.