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Abstract: While Ludwig Boltzmann's contributions to theoretical science are many, the Boltzmann distribution 
formula is arguably his most important contribution to the field of chemistry. The formula predicts the energy 
distribution of molecules in an equilibrium system at a given temperature. This distribution in turn governs 
numerous chemical phenomena, including the intensities of spectral lines, the rates of chemical reactions, and the 
sedimentation rates of macromolecules, just to name a few. The Boltzmann distribution is normally introduced to 
students during the statistical mechanics portion of the physical chemistry curriculum. The typical textbook 
derivation involves applying Lagrange's method of undetermined multipliers to a large system of particles. 
Undergraduate students, whose mathematics background is often limited to elementary differential and integral 
calculus, often have trouble grasping this approach because it involves the application of calculus to a 
multivariable statistical mechanical system. Offered here is an alternate derivation of the Boltzmann distribution 
formula that instead draws upon some intriguing connections to number theory. The derivation is rigorous and is 
also pedagogically attractive because one can refer to various graphical energy representations that illustrate how 
many different ways the particles can be arranged to satisfy the constraints of the system. 

Introduction 

Ludwig Boltzmann was influential in the development of the 
kinetic theory of gases and provided much of the foundation of 
statistical mechanics. He is perhaps most remembered for the 
absolute entropy formula,  

 S = klnΩ (1) 

where k is Boltzmann's constant, 1.381×10�23 J⋅K�1, and Ω is 
the number of ways of arranging particles in a system to 
achieve a particular macroscopic state (i.e., the number of 
microstates consistent with a particular macrostate). Equation 
1 provides a simple statistical definition of entropy, which in 
turn leads to a statistical interpretation of the second law of 
thermodynamics; namely, when a constraint is lifted from a 
closed system, it will evolve toward the most probable 
macroscopic state; the macroscopic state with the largest value 
of Ω. The entropy of this new unconstrained state, as defined 
by eq 1, is guaranteed to be higher than that of the constrained 
state because the later state has all the original microstates 
available, plus a new set of microstates due to the absence of 
the constraint (Ωunconstrained > Ωconstrained). 

Boltzmann is also credited with deriving the Boltzmann 
distribution formula, which describes the energy distribution of 
particles within the maximum entropy state of a system (more 
commonly referred to as the equilibrium state). The Boltzmann 
distribution predicts that the population of particles in a 
particular energy level (εj) is proportional to e jβε− , where β is 
a constant that is inversely related to the absolute temperature 
of the system. Others have shown that β = 1/kT; for example, 

the quantum evaluation of this constant has been illustrated in 
reference 1. The Boltzmann distribution has far reaching 
applications in chemistry. The distribution formula predicts the 
relative intensities of spectroscopic transition lines (for 
example, the slight population differences between the spin 
states of nuclei in a magnetic field that are directly related to 
the intensity of NMR spectra lines). Other applications of the 
distribution formula include the field of kinetics (transition 
state and collision theory) [2], Debye�Hückel theory [3], and 
the determination of macromolecular weights by sedimentation 
methods [4]. 

A number of schemes have been employed to derive and 
introduce the Boltzmann distribution equation in the 
undergraduate curriculum. The most common approach for 
deriving the distribution involves finding the configuration of 
particles in the system that yields the maximum value of Ω, 
subject to the constraints of constant particle number (N) and 
constant internal energy (U) [5�8]. Many undergraduate 
students have difficulty grasping this approach, especially 
those students that lack an appropriate background in 
differential calculus (a background that would allow them to 
comfortably apply Lagrange's method of undetermined 
multipliers to a multivariable statistical mechanical system).  
Other approaches have been proposed to introduce the 
Boltzmann distribution. One method derives the exponential 
form of the distribution from eq 1 and the thermodynamic 
relationship dS = dU/T [9]. Another approach infers the 
exponential nature of the Boltzmann distribution through the 
derivation of the barometric formula [10]. Finally, one can 
infer the exponential form of the distribution formula by 
examining the relationship F(ε1 + ε2) = F(ε1)F(ε2), where F(εj) 
is the independent probability that a particle in the system has 
energy εj and F(ε1 + ε2) is the resultant probability that the total 
energy of the system is equal to ε1 + ε2. The only mathematical 
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Figure 1. Two-dimensional state-space for a system of two particles 
(N = 2) that can each occupy an energy uk = jε where j = 0, 1, 2, 3, or 
4 (m = 4). The points on the diagonal line illustrate those microstates 
that satisfy the constraint of constant internal energy (U = m = 4). 

function that satisfies this probability rule is an exponential 
function [11]. 

Offered here is an alternate derivation of the Boltzmann 
distribution formula that draws upon some intriguing 
connections to number theory. The derivation is rigorous and 
the arguments are pedagogically attractive because one can 
refer to various graphical energy representations that illustrate 
how many different ways the particles can be arranged to 
satisfy the constraints of the system. 

The System 

Consider a macroscopic system consisting of N particles 
where the thermodynamic internal energy (U) of the system is 
constant. Furthermore, we will assume that each particle may 
occupy a series of equally spaced nondegenerate energy levels 
where the ground state energy level is defined as zero for 
convenience. The quantum-energy-level spacing (ε) is assumed 
to be much smaller than the average particle energy (ε  << 
U/N), which guarantees there will be a large number of ways 
of partitioning the energy in the system to achieve U. While 
random kinetic motion causes a continuous repartitioning of 
energy among the particles in the system (sampling all possible 
microstates with equal probability), the energy of a particular 
particle k at any instant can be expressed as uk = jε where j is 
an integer between 0 and m. The constant m is related to the 
total internal energy of the system as U = mε. The population 
of particles in a particular energy state jε is represented by nj. 

We now take on the task of determining how many different 
ways one can arrange the N particles among the m + 1 energy 
levels such that the constraints of constant particle number Σni 

= N and constant internal energy Σjεnj = U are satisfied. The 
counting of microstates in the system described above is 
facilitated by representing each permitted arrangement as a 
point in an N-dimensional �state-space.� Beginning with a very 

simple system of only two particles (N = 2), the permitted 
microstates are represented by the points along the diagonal 
line in Figure 1 (where m is arbitrarily set equal to 4 for the 
sake of illustration). Five microstates are available in a system 
with N = 2 and m = 4, corresponding to the configurations 
(4,0), (3,1), (2,2), (1,3), and (0,4). 

Our ultimate goal is to derive a probability distribution 
function for the system, a function that predicts the probability 
that a particle in the system (we will consider particle number 
1 for the sake of argument) resides in the jth energy level. 
Assuming all microstates have an equal chance of being 
visited, then the probability distribution function is given by 
the ratio 

 ( )( ) G jp j
X

=  (2) 

where G(j) is the number of microstates in which particle  
number 1 resides in the jth energy level and X is the total 
number of microstates. In the N = 2 system, there is only one 
microstate associated with particle number 1 having any one of 
the permitted energies between j = 0 and j = m. Consequently, 
the numerator of eq 2 is equal to 1 and the probability 
distribution function becomes p(j) = 1/(m + 1); the probability 
distribution is flat. 

The microstates available to a three-particle system (N = 3) 
can be represented by the points on the diagonal plane shown 
in Figures 2A and 2B (where m is again arbitrarily set equal to 
4). An examination of Figure 2 reveals a total of 15 microstates 
(X = 15) for the m = 4 case. There are m + 1 microstates with 
particle number 1 in the j = 0 energy level, m + 1 � 1 
microstates with particle number 1 in the j = 1 energy level, m 
+ 1 � 2 microstates with particle number 1 in the j = 2 energy 
level, and so forth, until one reaches the single microstate 
where all the system's energy is contained in particle number 1 
(the j = m energy level). The probability distribution is not flat 
for the N = 3 system, and instead it decreases linearly with 
increasing energy level. The probability distribution function 
for this case, which will be developed formally below, is  

 ( )
( )( )
2

( )
2 1

m j
p j

m m
− +

=
+ +

1
 (3) 

Using Pascal's Triangle to Count Microstates 

The generation of probability distribution functions for 
systems containing an arbitrary number of particles will 
require generic expressions for calculating G(j) and X in eq 2. 
Mathematicians have long been fascinated with problems of 
finding the number of ways of arranging N objects among 
available slots, subject to certain types of constraints. 
Accordingly, there is a direct connection between the work of 
early number theorists and the counting of microstates in 
statistical mechanical systems. Relevant to the system 
described here is an arrangement of numbers that was intensely 
investigated by the French mathematician Blaise Pascal over 
350 years ago. This pattern of numbers, popularly referred to 
as Pascal's triangle [12, 13], is shown in Figure 3. Each 
number in the triangle, B(r,c), is the sum of the number 
immediately above, B(r � 1,c), and the number immediately 
above and to the left, B(r � 1,c � 1), where r and c identify the 
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Figure 2. Three-dimensional state-space for a system of three 
particles (N = 3), illustrating the allowed microstates. 

location of the number by row and column, respectively. By 
convention, r = 0 and c = 0 identify the first row and column 
of the triangle. The numbers along any row of the triangle 
yield the binomial coefficients found in the expansion (x + y)r. 
A useful expression for obtaining any binomial coefficient in 
the triangle is 

 ( )
!( , )

! !
rB r c

c r c
=

−
 (4) 

where x! denotes the product x(x � 1)(x � 2)(x � 3) � (1) and 
0! = 1 by definition [12]. 

A remarkable link can be recognized concerning the number 
of microstates in the systems under consideration here and the 
binomial coefficients in Pascal's triangle. For the case N = 3 
and m = 4 shown in Figure 2, the total number of microstates 
(X) is identified by the binomial coefficient B(6,2) = 15 (i.e., 
the binomial coefficient located at r = 6 and c = 2). 
Furthermore, the corresponding values of G(j) from eq 2 for 
the N = 3 system are found along the c = 1 column of the 
triangle, yielding G(0) = B(5,1) = 5, G(1) = B(4,1) = 4, G(2) = 
B(3,1) = 3, and so forth to the top of the column. The values of 

X and G(j) can be found in Pascal's triangle for N = 3 systems 
described by any value of m; more generally, X = B(m+ 2,2) 
and G(0) = B(m + 1,1). 

We now consider the N = 4 system with a goal of verifying 
that Pascal's triangle can be used to count microstates for a 
system with any number of particles. Just as one can utilize a 
two- and a three-dimensional graph to illustrate the microstates 
of an N = 2 and N = 3 system, respectively, the microstates for 
an N = 4 system can be represented as points on a four-
dimensional hyperplane. (The word hyperplane is used here to 
refer to any N-dimensional surface that illustrates the available 
state-space.) The counting of microstates becomes difficult for 
N > 3 systems because the available state-space cannot be 
easily visualized. Alternatively, the N = 4 system can be 
imagined as a sequence of N = 3 triangular planes stacked one 
on top the other (as shown in Figures 4A and 4B for the case m 
= 4). The point labeled 1 in Figure 4A corresponds to the 
microstate where all the energy is contained in particle number 
1 [14]; the configuration (4,0,0,0). Immediately under this 
point is a trigonal plane (labeled 2) that illustrates the three 
configurations (3,1,0,0), (3,0,1,0), and (3,0,0,1); these 
microstates lie on the three vertices of the triangle. The 
microstates corresponding to particle number 1 possessing 
energies j = 2, j = 1, and j = 0 are shown in more detail in 
Figure 4B, indicating 6, 10, and 15 microstates, respectively. A 
careful examination of Figures 4A and 4B reveals a total 
number of microstates equal to 35 and the individual values of 
G(j) are 15, 10, 6, 3, and 1. Again, we find these numbers in 
Pascal's triangle; X = B(7,3) = 35 and the various values of 
G(j) are found in the c = 2 column. 

An important theme begins to emerge as one considers 
systems with an increasing number of particles. Namely, the 
microstates for an N-particle system can always be represented 
as a stacked sequence of N � 1 hyperplanes. Figures 4A and 4B 
clearly show how to build the N = 4 state-space out of a 
sequence of N = 3 trigonal planes. Another example is 
provided by the N = 3 system; the microstates lying on the 
trigonal plane of Figure 2 can be imagined as a stacked 
sequence of N = 2 diagonal lines. Crucial to our argument here 
is the fact that a similar �stacking� relationship is observed in 
the numbers along any column of Pascal's triangle. For 
example, the sum of the first five numbers in the c = 2 column 
1 + 3 + 6 + 10 + 15 = 35, which is the binomial coefficient 
found immediately below and to the right of the last number in 
the sum. This property among the binomial coefficients in the 
triangle is always true and can be more generally represented 
as 

  (5) 
0

( , ) ( 1, 1)
m

r
B r c B m c

=
= + +∑

In summary, we have established a recurrence relationship 
for generating the N particle state-space out of N � 1 state-
spaces, and we have also shown that this recurrence 
relationship is reflected in the numbers along adjacent columns 
of Pascal's triangle, meaning we are free to use eq 4 to 
calculate the quantities X and G(j) for any combination of N 
and m. The N = 3 and N = 4 cases considered above suggest 
that the total number of microstates can always be represented 
by the binomial coefficient 
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1                

1 1 1               

2 1 2 1              

3 1 3 3 1             

4 1 4 6 4 1            

5 1 5 10 10 5 1           

6 1 6 15 20 15 6 1          

7 1 7 21 35 35 21 7 1         

8 1 8 28 56 70 56 28 8 1        

9 1 9 36 84 126 126 84 36 9 1       

10 1 10 45 120 210 252 210 120 45 10 1      

11 1 11 55 165 330 462 462 330 165 55 11 1     

12 1 12 66 220 495 792 924 792 495 220 66 12 1    

13 1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1   

14 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1  

 
 
 
 
 
 
 
 
 
 
 
r 

15 1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1 

Figure 3. Pascal's triangle. The integers in the triangle are called binomial coefficients and their locations are identified by their row (r) and column 
(c) number. 
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Figure 4. Four-dimensional state-space for a system of four particles 
(N = 4) that is constructed from a stacked sequence of three-
dimensional triangular planes. 

 X = B(N + m � 1,N � 1) = ( )
( )

1 !
1 ! !

N m
N m

− +
−

 (6) 

The corresponding values of G(j) are given by 

 G(j) = B(N + m � 2 � j, N � 2) = ( )
( ) ( )

2 !
2 ! !

N m j
N m j

− + −
− −

 (7) 

The Probability Distribution Function for a Large System 

We are now prepared to consider the form of the probability 
distribution function for a macroscopic system (where N may 
be on the order of 1023) and ultimately confirm Boltzmann's 
form for the distribution function that exhibits an exponential 

energy dependence ( ). Substituting eqs 6 and 7 into eq 
2, one obtains a general expression of the distribution function 

je βε−

 

( 2 )!
( 2)!( )!( )

( 1 )!
( 1)! !

N m j
N m jp j

N m
N m

 − + −
 − − =
 − +
 − 

( )

=

( ) ! ( 2 )1
! ( 1 )!

m N m jN
m j N m

 − + −−   − − +  

! 
  (8) 

where the simplification (N � 1)!/(N � 2)! = (N � 1) has been 
used. Equation 8 can be used at this point to calculate the 
probability distribution function for the three-particle system 
considered earlier, confirming eq 3. 

Writing out equation 8 for the first few energy levels ( j= 0, 
1, and 2), one obtains 
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Figure 5. Four plots of the probability distribution function (eq 12) at 
different temperatures where high temperature is associated with large 
values of the ratio m/N. As expected, the width of the distribution 
function grows with temperature, implying that the energy of the 
system is distributed over a larger fraction of particles. 

 ( 1)(0)
( 1

Np
)N m

−=
− +

≈
( )

N
N m+

 (9a) 

 ( 1)(1)
( 1 )( 2

N mp
)N m N m

−=
− + − +

≈
( )

N m
N m N m


 + + 

 (9b) 

2( 1) ( 1)(2)
( 1 )( 2 )( 3 ) ( )

N m m N mp
N m N m N m N m N m

− − = ≈  − + − + − + + + 
  (9c) j j

where a number of simplifications have been made because we 
are focusing on systems in which N and m are much greater 
than 1, meaning expressions like (N � 1 + m)(N � 2 + m) and 
m(m � 1) can be approximated as (N + m)2 and m2, 
respectively. Examining eqs 9a�c, one can infer a general 
approximate expression for the distribution function, yielding 

 ( )
jN mp j

N m N m
≈  + + 

=
1

1
jm m

N N m

−
  +   +  

  (10) 

This exponential form of the distribution function can be 
converted to the more familiar exponential form by finding the 
value of x that satisfies the definition 

 e
j

x m
N m

=  + 
 

Taking the natural logarithm of both sides gives 

 x = ln mj
N m


 + 

= ln 1Nj
m

− +
 

  (11) 

Using this result, the distribution function can be written in the 
final form 

 
1

( ) 1 jmp j e
N

β
−

−= + 
 

 (12) 

where the constant β is used to abbreviate the logarithmic 
portion of eq 11 

 β = ln  (13) 1N
m

 +
 



Equation 12 confirms Boltzmann's result; the probability 
distribution function contains an exponential energy 
dependence. Recognizing that the integer value of j, as defined 
here, represents the energy that a particle can acquire in units 
of ε (the energy-level spacing) and recognizing that the term 
(1 + m/n)�1 is just a constant for a given system, then eq 12 can 
be rewritten in the familiar form from statistical mechanics 
[15] 

 1( ) jp j e
q

ε β−=  (14) 

where the constant term, represented by 1/q, is recognized as 
the reciprocal of the partition function for the system. Indeed, 
the standard expression for the partition function from 
statistical mechanics [16] can be used to independently obtain 
the constant term in eq 12, yielding 

 
2

2

0 0
1 ...

1 ...

j

m

m m
j mq e e e e e

e e e

ε β β β β β

β β β

− − − −

= =

− − −

= = = + + + +

= + + + +

∑ ∑ −

 

 1 1
1

mq
Ne β−
≈ = +−  
  (15) 

where the sum-over-states has been treated as an infinite sum 
because m >> 1, and where we have substituted for β in eq 13 
to achieve the final result. 

Others have shown that the constant β is equal to 1/kT [1], 
which, when combined with equation 13, yields a definition 
for absolute temperature in our system 

 1

ln 1
T

Nk
m

=
 + 

 

 (16) 

Keeping in mind that m represents the total energy in our 
system (in units of ε), then eq 16 predicts that T approaches 
infinity as m approaches infinity and T approaches zero as m 
approaches zero, as expected. An inspection of eq 16 reveals 
that the absolute temperature of a system depends on the ratio 
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m/N; high temperature implies high internal energy (large m), 
which is associated with a large value of m/N. Figure 5 shows 
several plots of the probability distribution function (eq 12) at 
different m/N ratios (temperatures), revealing that the width of 
the distribution function grows with temperature. 

Conclusion 

The results obtained so far illustrate that the probability 
distribution function is indeed exponential in nature for the 
specific system considered here, a system of particles that may 
occupy a series of equally spaced nondegenerate energy levels 
(such as a system of independent harmonic oscillators). Will a 
similar result be obtained when the energy-level spacing is not 
constant or when degeneracies are present? The quantum 
mechanical energy expression for a particle of mass µ that is 
free to translate in a one-dimensional box of length L is given 
by 

 
2 2

28n
n hE

Lµ
=  

where the quantum number n can take on values 1, 2, 3, ... 
[17]. Redefining the translational energies relative to the 
ground-state energy (setting the ground-state energy to zero), 
the allowed energy levels become 

 εn = (n2 � 1)ε (17) 

with 

 
2

28
h

L
ε

µ
=  

Equation 17 reveals that the energy levels available to the 
system are all a multiple of a constant ε, and the allowed 
multiples are defined by (n2 � 1), which takes on integer values 
0, 3, 8, 15, ..., m for n quantum number values 1, 2, 3, 4, ..., (m 
+ 1)1/2, respectively. When compared to our previous 
treatment, the microstates available in a system of particles that 
can occupy these translational energy levels can be carried out 
using the same Pascal's triangle-based method, only the values 
of j that are considered must be restricted to those satisfying 
the condition (n2 � 1); j = 0, 3, 8, 15, ..., m. Although the total 
number of microstates available to the system will be greatly 
reduced in comparison to the values predicted by eq 6, the use 
of eq 7 is still valid and a full derivation of the probability 
distribution function (not shown here) again reveals an 
exponential dependence on j. Only the constant term in eq 12, 
representing the partition function, and the magnitude of β are 
changed by the reduction in total microstates available in the 
system. 

Similar arguments can be made concerning the rotational 
energy states of a system, where the allowed energy levels can 
be represented as a constant times the term J(J + 1) where J = 
0, 1, 2, ... is the rotational quantum number [18]. The 

probability distribution function can be inferred for this system 
by only considering values of j that satisfy the condition J(J + 
1), j=0, 2, 6, .... The degeneracy of the rotational levels can be 
accounted for in the derivation by incorporating the 
degeneracy factor (2J + 1) in eq 7. This will account for the 
fact that, for example, the microstates associated with a triply 
degenerate energy level would need to be counted three times.  

The energy levels available to any imaginable system can be 
described as we have done here by selecting a suitably small 
energy-level spacing (ε), thereby guaranteeing that the real 
energy levels will always nearly coincide with one of the jth 
energy levels. Although the value of m may be unusually large, 
one can still utilize the approach demonstrated in this work to 
derive the probability distribution function, which will always 
reveal an exponential dependence on j (the energy of the 
level). 
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