Magic Carpets

Erich Friedman
Stetson University
Deland, FL 32720

Mike Keith
4100 Vitae Springs Road
Salem, OR 97306

Email addresses: $\underline{\text { efriedma@stetson.edu }}$ and domnei@aol.com

Abstract: A set-theoretic structure, the magic carpet, is defined and some of its combinatorial properties explored. The magic carpet is a generalization and abstraction of labeled diagrams such as magic squares and magic graphs, in which certain configurations of points on the diagram add to the same value. Some basic definitions and theorems are presented as well as computer-generated enumerations of small non-isomorphic magic carpets of various kinds.

Introduction

In its most general form, a magic carpet is a collection of k different subsets of a set S of positive integers, where the integers in each subset sum to the same magic constant m. In this paper we always take $S=\{1,2,3, \ldots n\}$, and refer to a magic carpet on this set as an (n, k)-carpet.

A $(9,8)$-carpet is shown in Figure 1, with each element of S depicted as a point (labeled with the element it represents) and each subset of S as a line connecting the points in that subset.

Figure 1. A $(9,8)$ magic carpet
This is just an ordinary 3×3 magic square, with each row, column, and diagonal having the same magic sum. Indeed, the motivation for this study is to generalize the notion of a magic square to an arbitrary structure on the set $\{1 \ldots n\}$, and to count and classify all non-isomorphic carpets on n points. By doing so, all possible "diagrams" of this type, in which points are labeled by $\{1 \ldots . n\}$ and whose lines or circles or other geometric elements pass
through points with the same sum, can be generated. By omitting labels, such a diagram turns into a puzzle whose object is to determine the magic numbering. For example, the seven intersections in Figure 2 can be numbered with $\{1 \ldots .7\}$ such that the circle and each of the two ellipses sum to the same value. Can you verify that this is a $(7,3)$ magic carpet by finding such a numbering? (The answer is given later, in Figure 4.)

Figure 2. A 7-point diagram that can be magically numbered.
A magic carpet is a generalization of other structures which have appeared in the literature, such as magic circles [5], magic stars [3], and magic graphs [2].

Definitions

Denote the subsets of S by S_{1}, \ldots, S_{k}. Let element i in S be included ("covered") c_{i} times in the union of all the S_{i}. The thickness of a carpet is $t=\min \left\{c_{i}\right\}$ and its height is $h=\max \left\{c_{i}\right\}$. Since $t<=h$, there are two cases: a smooth carpet with $t=h$, or a bumpy one with $t<h$. Because of the analogy with magic squares, holey carpets with $t=0$ are not very interesting, since we would like each element of S to be covered at least once (or, equivalently, for every number from 1 to n to be used in labeling the figure). In fact, a magic square has $t=2$, so we are also less interested in the thin carpets with $t=1$. Instead, we prefer to concentrate on plush carpets with $t>=2$.

Let the subset S_{i} have e_{i} elements. Define the weave of a carpet to be $w=\min \left\{e_{i}\right\}$. Again motivated by magic squares, we note that loose carpets with $w=1$ are not as interesting as tight ones with $w>=2$. If all the e_{i} are equal (i.e., all subsets are the same size) then the carpet is balanced.

Example: an $r \mathrm{x} r$ magic square, $r>=3$ odd (with rows, columns, and two diagonals having the same magic sum), is a magic carpet with $n=r^{2}, k=2 r+2, t=2, h=4$ and $w=r$. It is balanced but not smooth, since $t<h$. Its non-smoothness is due to the diagonals being covered three times and the central square four times, while the rest are only covered twice. If the diagonals are omitted (so that we have a so-called semi-magic square) then it becomes smooth. In either case, it is plush (since $t=2$) as well as tight (since $w>=2$).

Define a basic magic carpet to be one that is both plush and tight. Two magic carpets are isomorphic if they are equivalent under some permutation of the elements of S. (Of course, equality of the collection of subsets is made without regard to order of the subsets.) The motivation for this definition is that two carpets which are equivalent under a permutation of S correspond to two different magic numberings of the same "figure"; i.e., we seek magic carpets with the same basic structure. In other words, we wish to enumerate all essentially different magic-numbering puzzles (blank diagrams), not all distinct solutions (labeled diagrams).

Results

The primary combinatorial problem is to determine $B(n)$ or $B(n, k)$, the number of non-isomorphic basic magic carpets with given parameters. We also denote by $M(n, k, t, h)$ the number of magic carpets (basic or not) of type (n, k, t, h).

Theorem 1: $B(n)=0$ for $n\langle 5, B(5)=1, B(n)\rangle=1$ for $n\rangle=6$.

Proof: The values for $n<=5$ are easily obtained by direct enumeration. For $n>5$, observe that any (n, k) magic carpet can be extended to an $(n+1, k)$ carpet by taking each S_{i}, adding 1 to each of its elements, then appending the element " 1 ".

The unique smallest basic magic carpet, with $(n, k, t, h)=(5,3,2,2)$, can be drawn as shown in Figure 3. It is smooth but not balanced.

Figure 3 . The unique $(5,3)$ basic magic carpet.
Theorem 2: $M(n, k, t, h)=M(n, k, n-h, n-t)$.
Proof: From each (n, k, t, h) carpet, form another one by taking the complements of the S_{i}.
Two carpets which are related by complementation of the subsets are called duals. Note that if $\mathrm{C}^{\prime \prime}$ is the dual of carpet C that has magic constant m, then C^{\prime} has magic constant $T_{n}-m$, where $T_{n}=n(n+1) / 2$, the nth triangular number.

We now ask a fundamental question: for a given n, which values of k admit a basic magic carpet? From the definitions it is clear that $2<=k<=2^{n}-n-1$ (the latter being the number of subsets with at least two elements); however, the actual range of k is considerably smaller than this.

Theorem 3: There is a basic (n, k) magic carpet if and only if $n>=5$ and $3<=k<=q$, where q is the largest coefficient in the polynomial

$$
P(n)=\prod_{i=1}^{n}\left(1+x^{i}\right)
$$

Proof: See Theorem 1 for the proof that $n>=5$ is necessary and sufficient. Obviously k cannot be 2 , because two distinct subsets of $\{1 \ldots n\}$ cannot cover all elements twice. Thus $k>=3$ is necessary. That $k<=q$ is necessary is trivial, since the coefficient of x^{j} in $P(n)$ is the number of distinct subsets of $\{1 \ldots n\}$ whose elements
sum to j, and q is by definition the maximum coefficient.
We now show that $3<=k<=q$ is sufficient.

Let $d_{j}(n)$ be the coefficient of x^{j} in the polynomial $P(n)$ given above. Note that the sequence $d_{j}(n)$ is symmetric:

$$
\begin{equation*}
d_{j}(n)=d_{T_{n}-j}(n) . \tag{*}
\end{equation*}
$$

Let

$$
q(n)=\max d_{j}(n)
$$

j
which equals the maximal number of subsets of $\{1, \ldots n\}$ that have the same sum. Finally, define $m(n)$ to be the largest integer such that $d_{m(n)}(n)=q(n)$.

Lemma 1: $T_{n} / 2<=m(n)<=T_{n}-5$.
Proof: The first inequality follows from $\left(^{*}\right)$. For $n>=4, d_{0}, d_{1}, d_{2}, d_{3}, d_{4}, d_{5}=1,1,1,2,2,3$. Since $d_{5}(n)>d_{j}(n)$ for $0<=j<=4,\left({ }^{*}\right)$ gives $d_{T_{n}-5}(n)>d_{T_{n}-j}(n)$ for $0<=j<=4$, which means that $m(n)$ is at most $T_{n}-5$.

Lemma 2: Let $n>=6$ and $1<=j<=n$. There are at least two subsets of $\{1 \ldots n\}$ that add to $m(n)$ and contain j.
Proof: The number of subsets of $\{1 \ldots n\}$ that add to $m(n)$ and contain j is the coefficient of $x^{m(n)-j}$ in the polynomial

$$
P(n, j)=\left(1+x^{j}\right)^{-1} \prod_{i=1}^{n}\left(1+x^{i}\right)
$$

We prove by induction on n that this coefficient is always at least 2 .
By Lemma 1, it is necessary to show that the coefficients of x^{r} in $P(n, j)$ are at least 2 for $T_{n} / 2<=r-j<=T_{n}-5$, or $T_{n} / 2-j<=r<=T_{n}-5-j$. If a given $P(n, j)$ satisfies this we say that $P(n, j)$ has property P.

The lemma is true for $n=6$ since the coefficients of $P(n, j)$ are

```
j=1: 101112222323222211101
j=2: 11012222233222221011
j=3: 1111123322233211111
j=4: 111212323323212111
j=5: 11122233233222111
j=6: 1112233333322111
```

and each of these (as indicated by the boldface numbers) has property P.

Now consider two cases:

Case I: $j<=6$. We have

$$
P(n, j)=P(6, j) \prod_{i=7}^{n}\left(1+x^{i}\right)
$$

We know $P(6, j)$ has property P (see table above), and multiplying by each factor i in the product is equivalent to shifting the vector of coefficients to the right by i places and adding to the original. This preserves property P.

Case II: $j>6$. In this case we start with

$$
\prod_{i=1}^{6}\left(1+x^{i}\right)
$$

which has coefficients 1112234445555444322111 and satisfies property P. Again, multiplying this by the remaining $\left(1+x^{i}\right)$ will preserve property P.

Lemma 3: $d_{m(n-1)}(n)=d_{m(n-1)}(n-1)+d_{m(n-1)-n}(n-1)$.
Proof: Since

$$
\prod_{i=1}^{n}\left(1+x^{i}\right)=\left(1+x^{\mathrm{n}}\right) \prod_{i=1}^{n-1}\left(1+x^{i}\right)
$$

it follows from the definition of $d_{j}(n)$ that $d_{j}(n)=d_{j}(n-1)+d_{j-n}(n-1)$. The lemma follows by setting $j=m(n-1)$.
Lemma 4: For $n>=10, q(n-1)>2 n$.
Proof: Consider the equation of Lemma 3. The left-hand side is no larger than $q(n)$. The first term on the right-hand side is $q(n-1)$. The second term is at least 2 , because Lemma 1 says that $m(n-1)-n>=T_{n-1} / 2-n$, the right-hand side of which is at least 3 (if $n>=7$), and $d_{j}(n)$ is at least 2 if j is at least 3 . Therefore, $q(n)>=$ $q(n-1)+2$.

Now note that the values of $q(n)$, starting with $n=5$, are:

$$
3,5,8,14,23,40,70,124,221,397, \ldots
$$

which is sequence A25591 in [6]. Since $q(10-1)=23>2 \ldots 10$, the lemma is true for $n=10$. Using $q(n)>=$ $q(n-1)+2$ and induction on n completes the proof.

We can now prove Theorem 3 by induction. First, it is true for $n<10$ by direct construction by computer. We can construct (n, k) basic magic carpets for $3<=k<=q(n-1)$ by taking an $(n-1, k)$ carpet and appending n to each subset. By Lemma 4, this gives carpets for $3<=k<=2 n$.

Next, we construct an (n, k) basic magic carpet with $k=2 n$ and magic constant $m(n)$. For each $j, 1<=j<=n$, we find two subsets which add to $m(n)$ and contain j, which is possible by Lemma 2 . We can add any number of additional subsets and still have a basic magic carpet, thus producing basic (n, k) carpets for $2 n<=k<=q(n)$, and completing the proof.

Numerical Results

Table 1 shows all values of $B(n, k)$ up to $n=8$, determined by computer calculation. The initial values of $B(n)$, starting with $n=5$, are $1,10,271,36995, \ldots$ (sequence A55055).

	$k=3$	4	5	6	7	8	9	10	11	12	13	14	Total
$n=5$	1												

Table 1. The values of $B(n, k)$ for small indices.
Table 2 lists all the basic carpets for small values of n and k. For each carpet, the magic sum and the elements in each subset are listed (in a compact format: 1234 means $\{1,2,3,4\}$).

(n, k)	Sum	Subsets
$(5,3)$	10	1234235145
$(6,3)$	14	234513461256
	15	1234523461356
$(6,4)$	11	1235245236146
	12	12453451236246
	14	234513461256356
	15	1234523461356456
$(6,5)$	9	2341354512636
	10	123423514513646
	11	123524523614656
	12	12453451236246156
$(7,3)$	19	134561245712367
	21	1234562345713467
$(7,4)$	14	12563561247347
	15	2346135613471257
	15	234645613471257
	15	1234513561347267
	15	123454561347267
	15	1234523461257267
	16	12346235623471357
	16	12346145623471357
	16	1234623561357457

	17	12356	2456	12347	2357
	17	12356	2456	12347	1457
	17	12356	2456	12347	1367
	17	24561	12347	2357	367
	17	12356	2456	12347	467
	17	12356	12347	2357	467
	17	12356	12347	1457	467
	18	12456	3456	12357	1467
	18	34561	12357	2457	1467
	18	12456	3456	12357	567
	19	13456	12457	3457	1236
	19	13456	12457	1236	156
	21	123456	2345	7134	6712
	21	123456	2345	7134	6735
$(8,3)$	24	123567	1456	8234	
	24	123567	1234	6845	
	25	124567	1235	6812	3478
	25	34567	12356	8123	478
	28	123456	67234	5681	34578
	28	123456	67134	5782	5678

Table 2. The non-isomorphic basic magic carpets for small (n, k).
The $(5,3)$ carpet was shown graphically in Figure 3 . The $(6,3),(6,4),(6,5)$, and $(7,3)$ carpets are depicted in Figure 4 (in the same order they are listed in Table 2).

(6,3):

$(6,4)$

(6,5)

$(7,3)$

Figure 4. The distinct basic magic carpets for $n=6$ and $(n, k)=(7,3)$.
These figures show just one way of diagramming each magic carpet (in this case, primarily using circles and ellipses). The question of how best to visualize a carpet is primarily an aesthetic one.

The first $(6,3)$ carpet in Figure 4 (one of the "magic circle" figures shown in [5]) is the smallest one that is both smooth and balanced, and also the smallest one with a high degree of symmetry (six-fold).

Since many well-known magic structures (such as magic squares and stars) are either smooth and/or balanced, it is of interest to enumerate just the smooth or balanced basic carpets. Table 3 shows the number of smooth basic carpets for all (n, k) up to $n=9$. The last column is sequence A55056.

	$k=3$	4	5	6	7	8	9	10	11	12	13	14	15	Total
$n=5$	1													

Table 3. The number of smooth basic (n, k) magic carpets up to $n=9$.
In this table, empty cells indicate that there are no smooth carpets for that (n, k). (There are also none for $n=9$ and $k>15)$. Some of these missing (n, k) values are explained by:

Theorem 4: (n, k) basic balanced carpets can exist only if there exists a $2<=t<=k$ with

$$
t \ldots T_{n}=0(\bmod k) .
$$

Proof: Since each element of S appears exactly t times in the union of all the subsets, the sum of all elements of the subsets is $t \ldots T_{n}$. This means that the magic constant is $t \ldots T_{n} / k$, which must be an integer, and so the theorem follows.

For example, for $n=9$ smooth carpets cannot exist, by Theorem 4, for $k=13,14,16,17,19,22$, and 23. However, this theorem does not predict all inadmissable k values - Table 3 also gives zeros for $k=4,7,8,11$, 18,20 , and 21 . A complete characterization of which (n, k) pairs permit smooth basic carpets remains an open problem.

The largest k value which admits a smooth carpet (for $n=5,6 \ldots$) is $3,3,8,14,15 \ldots$ (sequence $\underline{\text { A55057 }}$).

Table 4 gives the number of balanced basic carpets for all ($n, k)$ up to $n=9$ (last column is sequence A55605).

	$k=3$	4	5	6	7	8	9	10	11	12	Total
6	1										

Table 4. The number of balanced basic (n, k) magic carpets up to $n=9$.
The largest k value which admits a smooth carpet (for $n=6,7, \ldots$) is $3,5,8,12,20,32,58,94,169,289 \ldots$ (sequence A55606).

All balanced carpets up to $n=8$ are listed in Table 5.

(n, k)		
	Sum	Subsets
$(6,3)$	14	234513461256
$(7,3)$	19	134561245712367
$(7,4)$	15	2346135613471257
$(7,5)$	12	345246156237147
	16	23561456234713571267
$(8,3)$	25	124567123568123478
$(8,4)$	18	2367146723581458
	20	13457124671245812368
	21	23457125671345812468
	22	23467135672345812478
	27	234567134568124578123678
$(8,5)$	16	23562347126713481258
	16	14561357126713481258
	17	24562357136723481358
	17	245614571367123481358
	18	34562457146723581458
	18	34562367146723581458
	18	34562457236714581368
	20	2345613457124671245812368
	21	2345713467125671345812468
	21	1346712567134581246812378
	22	2346713567234581346812478
	22	2346713567234581256812478
$(8,6)$	13	346256247157238148
	16	235614562347135713481258
	16	235614562347126713481258
	16	235614561357126713481258
	16	235623471357126713481258
	16	145623471357126713481258
	17	245623571457136723481358
	17	245623571457136723481268
	17	245623571457234813581268
	18	345624572367146723581458
	18	345624572367146714581368
	18	245723671467235814581368

$\left.\begin{array}{lllllllllll} & 18 & & 3456 & 2457 & 2367 & 1458 & 1368 & 1278 & & \\ & 21 & 23457 & 13467 & 12567 & 13458 & 12468 & 12378 \\ (8,7) & 16 & 23467 & 13567 & 23458 & 13468 & 12568 & 12478\end{array}\right]$

Table 5. All balanced basic carpets up to $n=8$.
Finally, Table 6 gives the number of smooth and balanced basic carpets up to $n=9$, and Table 7 lists them explicitly.

	$k=3$	4	5	6	78	9	Total
6	1						1
7							0
8		2		2	1		5
9	1			2		6	9

Table 6. The number of smooth-and-balanced basic (n, k) magic carpets up to $n=9$.

Table 7. All basic basic carpets that are both balanced and smooth, up to $n=9$.
Note that these appear in dual pairs, unless (a) one is a self-dual, like the first $(8,4)$ example, or (b) the dual is not a 2 -cover, like the second $(8,4)$ example.

References

[1] Dudeney, H. E., "536 Puzzles and Curious Problems", Scribner's, 1967.
[2] Hartsfield, N. and Ringel, G. Pearls in Graph Theory: A Comprehensive Introduction, Academic Press, 1990.
[3] Heinz, H., M agic Stars, http: //www.geocities.com/CapeCanaveral/Launchpad/4057/magicstar.htm
[4] Kordemsky, B., "The Moscow Puzzles", Scribner's, 1972
[5] Madachy, J. S., Madachy's Mathematical Recreations, Dover, p. 86, 1979.
[6] Sloane, N. J. A. On-line Encyclopedia of Integer Sequences
(Concerned with sequences $\underline{A 25591}, \underline{A 55055}, \underline{A 55056}, \underline{A 55057}, \underline{A 55605}, \underline{A 55606}$.)

Received Feb. 23, 2000; revised version received May 30, 2000; published in Journal of Integer Sequences June 10, 2000.

Return to Journal of Integer Sequences home page

