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Introduction
The problem of covering squares with congruent squares has been around a long
time. In 1931, Dudeney published a problem [1] in which a square table of area 
f  1.618 was to be covered with 3 square tablecloths of area 1. The solution is
shown below in Figure 1.

Figure 1. Optimal covering with 3 squares

Alexander Soifer [5], [6] considered the problem of finding the smallest number
of unit squares that can cover a square of side n+e. We consider the dual
problem of finding the side s(n) of the largest square that can be covered with n
unit squares.

From area considerations, it is trivial that s(n) ≤ √n, and from s(n2) = n and
monotonicity we have s(n) ≥ n . When the decimal part of √n is smaller than
1/2, this is the best known lower bound. Thus we only consider n where the
decimal part of √n is at least 1/2. (This is similar to the corresponding packing
problem of packing n unit squares inside the smallest square [2]. When n is
small and the decimal part of √n is larger than 1/2, the optimal packings seem to
be trivial.)

These best-known coverings seem to fall into 4 groups:



      I) a large square in the lower left corner, with additional squares covering the
bent strip along the upper and right hand edges.

      II) two triangular "staircases" of squares in the lower left and upper right
corners, with additional squares covering the main diagonal.

      III) four triangular "staircases" of squares in the corners, with a large square
"diamond" covering the center.

      IV) compound coverings made by overlapping smaller best-known
coverings.

We exhibit examples of each of these. Coverings not attributed to someone else
were discovered by the second author.

Examples

When n = k2-1, the best-known covering is usually in group I, as shown in
Figure 2. The covering in Figure 1 is also in this series. The first two coverings
in Figure 2 are due to David Cantrell.

Figure 2. Best-known coverings with 15, 24, and 35 squares (Type I)

Also, when n = k2-2, the best-known covering usually belongs (loosely) to
group I, as shown in Figure 3. These were discovered by Trevor Green, Michael
Kearney, and David Cantrell respectively.

Figure 3. Best-known coverings with 7, 14, and 23 squares (Type I)

When k2 - k < n < k2-2, the best-known covering is often in group II, as shown
in Figure 4. The first was discovered by David Cantrell.

Certain values of n lend themselves to a better covering in group III, as shown
in Figure 5. The first was discovered by Trevor Green.



Figure 4. Best-known coverings with 22, 31, 32, and 33 squares (Type II)

Figure 5. Best-known coverings with 8, 13, and 21 squares (Type III)

Still other values of n lend themselves to a compound covering in group IV, as
shown in Figure 6. These examples illustrate the general theorem that s(2n+2m) 
≥ s(n)+s(m).

Figure 6. Best-known coverings with 34 and 44 squares (Type IV)



The non-trivial conjectured values of s(n) are given in Table 1. A graph of the
conjectured values of s(n)2 is given in Figure 7.

Table 1. The non-trivial conjectured values of s(n)

Figure 7. The conjectured values of s(n)2

Proofs
To show that s(2)=1, assume 2 squares can cover a larger square S. Then both
squares must cover exactly two corners of S. Any square that covers the two left
(or right) corners of S can cover no more than length 2√2-1 < 1 of the horizontal
edges of S, a contradiction. The proofs of s(5)=2 and s(10)=3 are similar. 



To show that s(3)=√((√5+1)/2), assume 3 squares can cover a larger square S. 
We first show that each square covers a corner of S. Any square that covers the
two left (or right) corners of S can cover no more than length 1/3 of a horizontal
edge of S, so if two squares together cover all the corners, this leaves at least
length 1/2 uncovered along two opposite sides of S, which a third square cannot
cover. Thus each square covers a corner of S, and at least one square covers two
corners.

We can assume each square is translated and rotated so as to cover as much of
the perimeter of S as possible, and that a square T covers the top two corners. 
This only leaves one degree of freedom: the length R of the right side of S
covered by T, as in Figure 8. It is easy to verify that the side of S is largest when
R=0, which leads to the covering in Figure 1. 

Figure 8. Covering a square with 3 squares

Unsolved Questions
1) Are the coverings presented here optimal? The optimal covering is known
only when n = 2, 3, 5, 10, and square n.

2) What are the corresponding results for other shapes? Melissen [4] has
considered the case of circles covering circles, but little is known about other
shapes.

3) What are the results in higher dimensions? Even the case of 4 cubes
"covering" a cube is unsolved.
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