
The Game of Cubic is NP-complete
Erich Friedman

Stetson University
efriedma@stetson.edu

Introduction

In the puzzle solitaire game of Cubic, there are variously colored unit blocks in some
configuration. The player is allowed to drag blocks to horizontally adjacent and
unoccupied positions. Gravity pulls unsupported blocks down into available spaces.
When more than one block of the same color come into contact, they disappear. The goal
is to remove all the colored blocks.

An example of a puzzle is shown in Figure 1. We use differently numbered blocks instead
of colored blocks. The game of Cubic can be played on-line at
http://www.agon.com/doodle/four.html.

1 2 3 4 5

1 2 3 4 5

Figure 1. A small Cubic puzzle

We will show that the question of whether or not a given Cubic position is solvable is NP-
complete. To do so, we simulate Boolean circuits where "wires" carry truth values, and
junctions in these wires simulate logical gates. The question of whether a solution exists
corresponds to the canonical NP-complete problem Satisfiability [3], which asks whether a
set of truth values for the inputs exists that makes the output true. Similar approaches are
taken in [1, 2, 4-8].

The Construction

We will refer to a block with label n as an n-block. Our wires will be passageways for
blocks to move in. A wire carries the value TRUE is there is a 1-block moving through it,
and the value FALSE otherwise.

To create our inputs and outputs, we need to have variables which can have either truth
value, and be able to end wires in a way that requires them to have a specific truth value.
We will then present NOT and AND gates (which can be combined to create an OR gate).
Then we present configurations to split wires and allow wires to cross.

Our variable is shown in Figure 2. The left 1-block can either exit or remove itself by
moving right.

1
1 1

Figure 2. A variable

To make sure a wire is TRUE (or FALSE), we simply end the wire with a 1-block (or no
block) as in Figure 3.

1

Figure 3. How to make wires TRUE (left) or FALSE (right)

Our NOT gate is shown in Figure 4. A 1-block can exit if and only if one does not enter.

1

Figure 4. The NOT gate

Our AND gate is shown in Figure 5. In order to have a block exit, blocks must enter both
input wires. A 1-block must enter the left input wire, allowing the 2-block to slide to the
right, allowing a 1-block from the right input wire to exit. The 1-blocks at the top give an
optional 1-block to remove any 1-blocks that enter but do not exit. The eight blocks at the
bottom prevent two entering 1-blocks from cancelling themselves out.

2
2

1
1

1

1 1

1 1
33 3 3

Figure 5. The AND gate

We now present a configuration to switch the color of the signal carrying block. We will
need this construction to split a signal or allow signals to cross. This configuration, which
we call SWTICH, is shown in Figure 6.

1 1 12 2 2

2

1

1
33

Figure 6. The SWITCH configuration

If no 1-block enters, a 2-block can leave the top part to cancel with the 2-block in the
lower left. If a 1-block enters, the 2-block can exit, and a 1-block from above can be used
to cancel the remaining 1-block. The four blocks at the bottom prevent a 1-block from
exiting. There is no way that the truth value of the signal can change.

The configuration that allows two signals to cross is shown in Figure 7. The key is to
switch the color of one signal before and after the crossing. The blocks at the bottom
prevent a 1-block from exiting left and a 2-block from exiting right.

1

1
3 3

2

2
3 3

SWITCH

SWITCH

Figure 7. The configuration to allow crossing of wires

The configuration that duplicates a signal is shown in Figure 8. If a 1-block enters, a 2-
block must help it exit, but a 2-block can not exit unless a 1-block has entered and helps it
exit.

From these building blocks, it is clear that for any given Boolean circuit, we can construct
a Cubic position that is solvable if and only if the circuit is satisfiable. The mapping from
circuits to Cubic is bounded, so any polynomial time verification of the Satisfiability
problem extends to a polynomial time verification for Cubic. Thus Cubic is NP-complete.

SWITCH

2 2
2

1

1
3 3

2

2
33

Figure 8. The configuration to duplicate signals

References

[1] D. Beauquier, M. Nivat, E. Rémila, and J.M. Robson, Computational Geometry 5
(1995) 1-25.
[2] J. Culberson, "Sokoban is PSPACE-complete." preprint.
[3] M.R. Garey and D.S. Johnson, Computers and Intractibility: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.
[4] E. Goles and I. Rapaport, "Complexity of tile rotation problems." Theoretical
Computer Science 188 (1997) 129-159.
[5] E. Goles and I. Rapaport, "Tiling allowing rotations only." Theoretical Computer
Science 218 (1999) 285-295.
[6] R. Kaye, "Minesweeper is NP-complete." Mathematical Intelligencer, to appear.
[7] K. Lindgren, C. Moore and M.G. Nordahl, "Complexity of two-dimensional patterns."
Journal of Statistical Physics 91 (1998) 909-951.
[8] C. Moore and J.M. Robson, "Hard Tiling Problems with Simple Tiles." preprint.
[9] E. Rémila, "Tilings with bars and satisfaction of Boolean formulas." Europ. J.
Combinatorics 17 (1996) 485-491.

