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Abstract. We prove that a saturated set of n equilateral triangles with distinct 
integer side lengths exists only for even n ≥ 10. 
 
 
Introduction 
 
An arrangement of triangles in the plane is called saturated if the intersection 
of any two is either empty or is a common vertex and every vertex is shared 
by exactly two triangles. While others have dealt primarily with saturated 
sets of congruent triangles [1-4], our focus is on equilateral triangles with 
integer side lengths that are all distinct. The saturated sets are straightforward 
to build for n ≥ 12, but much more difficult for n = 10. Before proceeding to 
the constructions, we prove a key result. 
 
Theorem 1. In any saturated set of n equilateral triangles, n ≥ 10. 
 
Proof. Every triangle has three vertices, each of which is required to be on 
exactly two triangles, giving a total number of vertices equal to 3n/2.  Thus, n 
must be even. Consider the exterior boundary of a saturated 
configuration.  Call triangles that share a side with the boundary exterior 
triangles and call the others interior triangles.  Since every exterior triangle 
must have its third vertex (which we call an inside vertex) inside the 
boundary, the interior angles of the boundary must all be larger than 120º, 
two 60º angles plus whatever positive angle is between those 
triangles.  Therefore, there are at least seven exterior triangles. 
 
We now show that there are at least two interior triangles.  Two triangles 
cannot share more than one vertex, so an exterior triangle cannot have its 
inside vertex shared by an adjacent exterior triangle.  If non-adjacent exterior 



triangles never share inside vertices, then there must be at least 7/3 ≥ 2 
interior triangles to share them.  If non-adjacent exterior triangles share 
inside vertices, this splits the inside into at least two regions, each of which 
requires at least one interior triangle. 
 
Because any saturated set needs at least seven exterior triangles and at least 
two interior triangles, and because n must be even, we have n ≥ 10. n 
 
A saturated set of 10 distinct equilateral triangles 
 
The configuration of four equilateral triangles shown in Figure 1 is a 
fundamental building block for our construction, which includes two copies 
of the configuration, turned on their sides and joined by a pair of equilateral 
triangles in the center. The variables labeling the various triangles denote 
their side lengths. We refer to the configuration in Figure 1 as a 4-tuple of 
side lengths{a,b,c,d}. We define the width w of {a,b,c,d} as the distance 
|UV|. 

 

 
 

Figure 1. A configuration of 4 equilateral triangles. 
 
 
Theorem 2. The width w is given by w2 = 4 [(c2+d2) – (a2+b2)]. 
 
Proof. Refer to Figure 1. The origin O in the x-y plane is chosen as the point 
of intersection of the triangles POS (side a) and QOR (side b). The x-axis, 
shown as a dotted, directed line, bisects  ÐPOQ and ÐROS: thus, q + f = 
120º. We first prove that O is the midpoint of the line UV. From Figure 1, we 
obtain the coordinates for P = (–a cos q, a sin q), Q = (–b cos q, –b sin q),         
R = (b cos f, –b sin f), and S= (a cos f, a sin f). 
 
Given arbitrary points (x1,y1) and (x2,y2), the two points that form equilateral 
triangles with them have coordinates (x±,y±) = (½ (x1+x2) ± ½√3 (y2–y1),        
½ (y1+y2) ± ½√3(x1–x2)). Using (x–,y–), we have 
 



U = (–½ (a + b) (cos q + √3 sin q), ½ (a – b) (sin q – √3 cos q)), 
 
and using (x+,y+), we have 
 

V = (½ (a + b) (cos f + √3 sin f), ½ (a – b) (sin f – √3 cos f)). 
 
Because f = 120º– q , we see that cos f + √3 sin f = cos q + √3 sin q and 
also that sin f – √3 cos f = √3 cos q – sin q. We conclude that U = – V and 
therefore that O is the midpoint of the line from U to V. Consequently, the 
distance between U and O is ½ w, leading to: 
 

w2 = [(a+b)(cos q + √3 sin q)]2 + [(a–b)(sin q – √3 cos q)]2. 
 
Expanding the right-hand side, using the identities cos 2q = cos2 q – sin2 q 
and sin 2q = 2 sin q cos q, and then simplifying, we obtain 
 

w2 = 4(a2 + b2) + 4ab (√3 sin 2q – cos 2q). 
 
From triangle POQ, we have c2 = a2 + b2 – 2 ab cos 2q and from triangle 
ROS, we have d2 = a2 + b2 – 2 ab cos 2f by applying the Law of  Cosines. 
With f = 120º– q, we obtain cos 2f = – ½ cos 2q – ½√3 sin 2q, yielding 
 

(c2 + d2) – (a2 + b2) = a2 + b2 + ab (√3 sin 2q – cos 2q), 
 
and thus w2 = 4 [(c2 + d2) – (a2 + b2)]. n 
 
From Theorem 2, we see that if a, b, c, and d are integers, then w2 is also an 
integer. However, the width w is not necessarily an integer. 
 
Theorem 3. The formula 3(a4 + a2b2 + b4) + (c4 + c2d2 + d4) = 3(a2+b2) 
(c2+d2) holds for any 4-tuple {a,b,c,d} characterizing a configuration of 4 
equilateral triangles as depicted in Figure 1.  
 
Proof. Referring to Figure 1, we let 2q = 120º – y and 2f = 120º + y. From 
triangle POQ, we obtain c2 = a2 + b2 + ab (cos y – √3 sin y) and from 
triangle ROS, d2 = a2 + b2 + ab (cos y + √3 sin y), using the Law of Cosines. 
Thus, c2 + d2 = 2(a2 + b2 + ab cos y) and d2 – c2 = 2ab√3 sin y. We solve 
these equations for cos y and sin y, respectively, then square and add them 
to eliminate y. Simplifying the resulting equation yields the desired result. n 
 
We discovered 4-tuples {a,b,c,d} satisfying the formula in Theorem 3 via a 
comprehensive computer search that calculated d for given a, b, and c. We 
say that a 4-tuple is primitive if a, b, c, and d are co-prime. Among all the 4-



tuples we found, the only primitive one having integer width is X = {323, 
392, 407, 713}, with width 1290.  Our saturated set of 10 distinct equilateral 
triangles starts with the 4-tuple Y = {12369, 12776, 21293, 22231}, chosen 
because a ≈ b and c ≈ d, allowing it to fit between two end configurations 
without causing any triangles to overlap.  We scale up Y by a factor of 1290, 
and then replace the two larger triangles with 21293X and 22231X to serve 
as the end configurations.  Figure 2 displays the result. 
 

 

 
 
 

Figure 2. A saturated set of 10 distinct equilateral triangles. 
 

Saturated sets for even n > 10 

It is much easier to construct examples of saturated sets of n distinct integer 
equilateral triangles for even n > 10.  Let the 4-tuple Z = {35, 139, 146, 169}. 
If n = 0 (mod 4), then string together a loop of n/4 copies of Z scaled up by 
factors of 2, 3, 4, ....  If n = 2 (mod 4), then start with triangles of sides 150 
and 250 touching at a vertex and tilted appropriately such that two of the free 
vertices connect precisely with the 4-tuple Z. Connect the other two free 
vertices by stringing together (n–6)/4 copies of Z scaled up by factors of 2, 3, 
4 ….  



Open questions 

One can ask for which even n there exist saturated sets of n equilateral 
triangles of k different integer sizes. We denote any such structure by 
(n,k).  For k = 1, there are examples for n ≥ 42 [4], and 42 is strongly 
suspected to be minimum. For even n ≥ 10 and 2 ≤ k ≤ n, we conjecture that 
(n,k) exists except for (10,2), (10,3), and (14,2).  
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