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ABSTRACT 
 

MAXIMIZING ANGLE COUNTS FOR N POINTS ON A PLANE 
 

By 

Brian Heisler 

May 2009 
 

Advisor: Dr. Erich Friedman 
Department:  Mathematics and Computer Science 
 
Given a number of points, n, to be plotted on an infinite, two-dimensional plane, we will 

attempt to maximize the number of times angle Ө can be constructed using those n 

points. For the purpose of this proposal, we will only be considering the angles Ө ≤ 180˚. 

For collinear points, we allow Ө = 0˚ and Ө = 180˚, as these angles do exist on a straight 

line.  

Define f(n, Ө) to be the function whose value represents the maximum angle count of Ө 

on n points. As n becomes increasingly large, it is less likely that we will be able to find 

the exact values of f(n, Ө), and will thus attempt to find the upper and lower bounds for f 

(n, Ө). The lower bounds are the greatest number of angles that have been counted from a 

concrete construction of n points in a plane and the upper bounds are the theoretical 

greatest number of angles that can be constructed from n points in a plane.  
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Chapter 1. Introduction 
 

Given n points in a plane, there is a graph, G, which can be constructed and which 

consists of x number of angles Ө. The purpose of this research is to find the maximum 

number of occurrences of Ө, or maximum angle count. For the trivial case n = 3, finding 

the maximum angle count is simple. For n ≥ 4, finding the maximum angle count is not 

as simple. For these cases, we must bound the maximum angle count with upper and 

lower limits based upon mathematical theory and proofs. 

Define an angle count to be the number of times an angle Ө can be constructed for a 

given number of points.  

Define f(n, Ө) to be maximum angle count for those n points on the given angle Ө. Given 

the complexity of the construction of angles, we will not be able to give exact values for 

the maximum angle count for n ≥ 4. Instead, we will determine an upper and lower bound 

between which the true value for the maximum angle count lies.  
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Chapter 2. Small N Values 

2.1. N = 3 

We will start with the simplest case, when N = 3: 

Theorem 1:  

    {3 if Ө = 60˚  
f(3, Ө) =  {2 if 0˚ ≤ Ө < 60˚ or 60˚ < Ө < 90˚ 

     {1 if 90˚ ≤ Ө ≤ 180˚ 
Proof: 

Case 1: f(3, 60˚) = 3 

Consider Figure 1, an equilateral triangle ABC. By definition, an equilateral triangle has 

3 congruent sides, and thus 3 congruent angles. The sum of the interior angles of a 

triangle is 180˚. Let Ө represent each of the 3 congruent angles in the equilateral triangle 

∆ABC. Then 3Ө = 180˚. So Ө = 60˚. 

 

       Figure 1 

Case 2: f(3, Ө) = 2 for 0˚ ≤ Ө < 60˚ or 60˚ < Ө < 90˚ 

Consider Figure 2, the isosceles triangle ABC. Each of the base angles, �ABC and �ACB 

are congruent and acute (property of isosceles triangles). Let Ө represent �ABC. Since 



 8 

side AB and side AC are congruent, their opposing angles are congruent. So �ACB = Ө. 

Let α represent �BAC. Then Ө + Ө + α = 180˚. Then Ө < 90˚ is the solution for Ө for this 

equation. Clearly then Ө cannot occur more than 2 times for the specified value.  

A

B C
q q

 

     Figure 2                    

Case 3: f(3, Ө) = 1 for 90˚ ≤ Ө ≤ 180˚ 

Consider Figure 3, the triangle formed from 3 collinear points A, B, and C. This triangle 

can be viewed as a “flattened” version of Figure 2. So angles ABC and ACB are both 

congruent and equal 0˚. So �BAC = 180˚. By the same mathematical basis, f(3, 0˚) = 2. 

Let 90˚ < Ө < 180˚. Consider Figure 2 again, the isosceles triangle ABC. We know the 

sum of the interior angles of a triangle is 180˚. If Ө > 90˚ then 2Ө > 180˚. So for 90˚ ≤ Ө 

< 180˚, f(3 Ө) = 1. 

A B C

 

         Figure 3 

Let Ө =180˚. Then by the proof used in case 2, f(3, 180˚) = 1. 

Let Ө = 90˚. Then Ө occurs at the intersection of two perpendicular lines (Figure 4a. 4b, 

4c, 4d). To name an angle, we need 3 points, with the middle point being the vertex from 
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which the angle is subtended. So place one point, the vertex, at the intersection of the two 

perpendicular lines, and label it A. We must now form two more right angles using only 

two more points. Figures 4a, 4b, 4c, and 4d show the four different results from adding 

two more points on the graph (excluding the two cases where a straight angle is formed). 

From the four diagrams, we can see that creating two right angles using three points is 

not mathematically possible. So f(3, 90˚) = 1. 

       

        Figure 4a                  Figure 4b     Figure 4c   Figure 4d 

2.2. N = 4 

We next consider N = 4. First we will present a general result: 

Theorem 2: The maximum number of triangles which can be constructed from n points 

in a plane is nC3 =  

n!

3! Hn- 3L!  

Proof: 

Given n points, we choose any 3 of the n to construct a triangle. Thus, we use the formula 

nC3 to solve for the maximum number of triangles that can be constructed using n points. 

♣ 

Theorem 3: f(n, Ө) ≤ f(3, Ө) x ( nC3) for 0˚ ≤ Ө ≤ 180˚ and n ≥ 4. 

Proof: 
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In theorem 2, we showed the maximum number of triangles that can be formed from n 

points is nC3. In theorem 1 we showed the values of f(3, Ө). So we can have, at most, f(3, 

Ө) angles in each triangle and nC3 triangles. So f(n, Ө) = f(3, Ө) x ( nC3 ). ♣  

We can now use theorems 1, 2, and 3 to find maximum angle counts for Ө on 4 points in 

a plane. For some values of Ө, though, we will bound f(4, Ө) with an upper and lower 

limit, as the exact maximum angle count is not apparent. 

Theorem 4: For 0˚ < Ө < 90˚, 4 ≤ f(4, Ө) ≤ 8. 

Proof: 

Consider Figure 5, the quadrilateral ABCD formed by vertically reflecting Figure 1 about 

its base side. We now have 4 equivalent angles Ө < 90˚. From theorems 2 and 3, we 

know there are at most 4 triangles that can be constructed from 4 points, and can have a 

maximum of 4f(3, Ө) angles for Ө < 90˚. So f(4, Ө) ≤ 8. ♣ 

 

                 Figure 5 

Theorem 5: For 90˚ < Ө < 180˚, 2 ≤ f(4, Ө) ≤ 4. 

Proof: 
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Consider Figure 6, a 90˚ clockwise rotation of Figure 5. If �ADB and �ABD < 45˚, then 

90˚ < �DAC < 180˚ and 90˚ < �DCB < 180˚. So f(4, Ө) ≥ 2 for 90˚ < Ө < 180˚. From 

theorems 2 and 3 we know that we can have a maximum of 4f(3, Ө) obtuse angles. So 

f(4, Ө) ≤ 4 for 90˚ < Ө < 180˚. ♣ 

 

 Figure 6 

Theorem 6: f(4, 90˚) = 4. 

Proof: 

Let ABCD be a square, with the four angles �ABC, �BCA, �CDA, and �DAC equivalent 

right angles (see Figure 7). We now have a concrete example to show f(4, 90˚) ≥ 4. From 

theorem 1, f(3, Ө) = 1 and from theorem 3, the maximum angle count for 90˚ ≤ Ө < 180˚, 

f(4, Ө) ≤ 4. Thus, 4 ≥ f(4, 90˚) ≥ 4. So, f(4, 90˚) = 4. ♣ 
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        Figure 7  

Theorem 7: f(4, 0˚) = 8. 

Proof: 

From theorem 1, f(3, 0˚) = 2. Consider Figure 8, the graph of 4 collinear points ABCD. 

From theorem 2, there are 4 unique triangles which can be constructed. So, there are 4f(3, 

0˚) = 8 angles Ө = 0˚. ♣ 

A B C D

 

                 Figure 8   

Theorem 8: f(4, 180˚) = 4. 

Proof: 

In theorem 1, we proved that f(3, 180˚) = 1. Consider again Figure 8. By the same 

calculations proven in case 2 of theorem 1, there are 4f(3, 180˚) = 4 angles Ө = 0˚. ♣ 
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Theorem 9: f(4, 45˚) = 8 

Proof: 

In theorem 3 we proved that for Ө < 90˚, 4 ≤ f(4, Ө) ≤ 8. Consider Figure 7, the square 

ABCD. Each of the vertex angles are right angles. The diagonals of the square bisect 

each of the vertex angles, creating two 45˚ angles at each one. So there are eight angles of 

45˚. So we have an figure of f(4, 45˚) ≥ 8, and we know that f(4, 45˚) ≤ 8. So f(4, 45˚) = 

8. ♣ 

Theorem 10: 6 ≤ f(4, 60˚) ≤ 8 

Proof: 

Consider Figure 9, the quadrilateral formed from the reflection of and equilateral triangle. 

We now have two equilateral triangles, each having f(3, 60˚) = 3. So f(4, 60˚) ≥ 6. From 

theorem 3, we know f(4, 60˚) ≤ 8. ♣ 

 

     Figure 9 

Theorem 11: 3 ≤ f(4, 120˚) ≤ 4 

Proof: 
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Consider Figure 10 below, the equilateral triangle ABC, with each angle bisected. The 

bisecting segments intersect at point D. Each line segment AD, CD, and BD all bisect the 

angles �ABD, �ACD, and �BAC. Because ABC is an equilateral triangle, these three line 

segments will intersect at the exact center of the triangle, and the 3 line segments will be 

congruent. Since the 3 line segments are equal, we have 3 congruent, isosceles triangles. 

So each of the 3 angles �ABD, �ACD, and �BAC are congruent and sum to 360˚. Let Ө 

represent each of the 3 angles. Then 3Ө = 360˚. So Ө = 120˚. So f(4, 120˚) ≥ 3. From 

theorem 3, f(4, 120) ≤ 4. ♣ 

 

  Figure 10 
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Chapter 3. Special Ө Values 

Among the general proofs for the maximum angle counts are certain Ө values that can be 

considered exceptions to this general proof. The general proof is considered to be the 

method of bounding the maximum angle count f(n, Ө), where n ≥ 4. Using this method, 

we simply maximize the number of triangles using theorem 2 and multiply this value by 

the max angle count found from f(3, Ө). This will give us an upper bound. The lower 

bound is found by construction of a figure on the n points. These special Ө values are 

considered special because they have different bounds, with the main difference being 

that their lower limit is greater than that of the lower limit of the general proof that Ө 

would fall into. Given a special Ө value for n points, n ≥ 4, a particular bound results, 

which differs from the bound given by the general proof for those n points. This special 

Ө value does not have the same bound for a construction or graph on a different n value, 

n ≥ 4.  

3.1. The Unique Ө 

In the field of mathematics called Graph Theory, a complete graph is defined as the 

simple graph on n vertices such that every edge is connected to all other edges, and is 

denoted Kn. 

Theorem 12: Given n points, where n ≥ 3 and no 3 are collinear, � a unique angle, � � 

180˚ mod (n) = 0, � � can occur no more than n(n-2) times. 

Proof: 

Consider the graph of Kn in which all n points lie on the circumference of a circle, C 

(Figure 11). Since every vertex in the vertex set V(Kn) is connected, Kn has the greatest 
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number of edges for a graph on n points. This implies that Kn also has the greatest 

number of angles for a graph on n points. In Kn every vertex is connected to (n-1) 

vertices. So there are n(n-1)/2 edges. Since every vertex is connected to (n-1) other 

vertices, there are (n-1) edges connecting each vertex. This creates at most (n-2) copies of 

one unique angle � at each vertex, each of which are interior angles. Thus there are n(n-2) 

copies of � in the graph Kn. The sum of the interior angles of any polygon on n vertices 

equals (n-2)x180˚. So given n(n-2) equivalent copies of �, we have an equation �x(n)x(n-

2) = (n-2)x180˚. Solving for �, we find � = 180˚/n. ♣ 

Theorem 13: The central angle subtended by two points on a circle is twice the inscribed 

angle subtended by those points (The Central Angle Theorem) [B2]. 

 
Proof [B3]: 
 

Case 1: One chord is a diameter [B3]. 

Let G be a circle with center C (see Figure 11a [A2]). Choose two points on the 

circle, say A and B. Draw line AC and extend this line until it intersects circle G at 

point D on the circumference. �DCB is a central angle and will be labeled Ө. Connect 

points V and A with a chord, and label �CAB ψ. Lines CA and CB are both radii of 

the circle G, so triangle CAB is isosceles. By the properties of an isosceles triangle, 

the angles opposite the equivalent sides are congruent. So �ABC is congruent to 

�CAB, and will also be labeled ψ. �DCB and �DCA are supplementary angles, and 

thus add to 180˚. So �BCA = (180˚ - Ө). We know the interior angles of a triangle 

add to 180˚ so we know ψ + ψ + (180˚ - Ө) = 180˚. Solving for Ө, we find Ө = 2 ψ. 
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We will use this proof to help prove the Central Angle Theorem when the diameter is 

not a chord.  

   

  Figure 11a    Figure 11b 

Case 2: Center of the circle in the interior of the angle [B3]. 

Let C be a circle with center point O (see Figure 12). Choose three points, say A, B, 

and D on the circle C. Draw lines AB and AD. Now �DAB is an interior angle. Draw 

line VO and extend it until it intersects the circle at point E. Now �DAB subtends arc 

BD on the circle. � DAE and �EAB are also now inscribed angles, each having one 

side passing through the center of the circle C. So, �DAB = �DAE + �EAB 

Let �DAB = ψ0  

Let �DAE = ψ1 

Let �EAB = ψ2 

So, ψ0 = ψ1 + ψ2  (1) 

Draw lines DO and BO, so �DOB is a central angle, along with �DOE and �EOB. 

So, �DOB = �DOE + �EOB 
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Let �DOB = Ө0 

Let �DOE = Ө1  

Let �EOB = Ө2  

So, Ө0 = Ө1 + Ө2  (2) 

We know from (A) that Ө1 = 2ψ1 and Ө2 = 2ψ2. Plugging these equations into (2), we find  

Ө0 = 2ψ1 + 2ψ2  

Ө0 = 2(ψ1 + ψ2) 

Ө0 = 2 ψ0   (3) (Figure 12 [A2]). 

Move point A along the circumference of G, and angle ψ0 will never change. ♣ 

  
   Figure 12 
 

3.2. Special Values for N = 3 

From theorem 1, for n = 3, Ө = 60˚ is considered a special value since it can occur 3 

times, in a graph of three points, whereas all other values f(3, Ө) ≤ 2. Since Ө = 60˚ does 

not follow the general proof for n = 3 (i.e. f(3, Ө) = 2 for 0˚ ≤ Ө < 90˚ and f(3, Ө) = 1 for 
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90˚ ≤ Ө ≤ 180˚), it will not follow the general proof for n > 3 (i.e. f(n, Ө) ≤ 2n for 0˚ ≤ Ө 

< 90˚ and f(n, Ө) ≤ n for 90˚ ≤ Ө ≤ 180˚) ♣. 

 

 

Chapter 4. Future Work  

Up until now, I have considered and examined the maximum angle counts for n = 3 and n 

= 4. As I continue my research, I will first continue examining the cases for f(5, Ө), and 

determine the bounds. While researching n = 5, and eventually n > 5, I will hope to come 

across a definite pattern between f(n, Ө) and f(n+1, Ө). Throughout my research, I was 

able to find more precise bounds for f(n, Ө), and will continue to search for even more 

precise ones than currently held.  

To guide me in my research I will study some of the works of highly-renowned 

mathematician Paul Erdős. Erdős specialized in Graph Theory, focusing on the branch of 

random graphs and their properties. I am essentially dealing with random graphs in my 

research, as any graph can be constructed from n points, and I must consider a variety of 

these graphs. Also, Erdős published some of his research on the optimization of similar 

triangles, which I will consider. From theorem 2, it was first proposed to maximize the 

number of triangles in a graph on n points, and I believe his work will guide me in this 

idea. 

 

 

 



 20 

 

 

 

 

 

References 

A. Offline 
 

[A1] J. Gross and J. Yellen, Graph Theory and its Applications, Edition 2, Chapman 
and Hall, Boca Raton, FL, 2006. 

 
B. Online 
 
[B1]  http://mathworld.wolfram.com/images/eps-gif/CentralInscribedAngle_1000.gif 
- Google Image. 
 
[B1] http://mathworld.wolfram.com/images/eps-gif/CentralInscribedAngle_1000.gif - 
John Page, Central Angle Theorem, Math Open Reference, 2007. 
 
[B3] http://en.wikipedia.org/wiki/Inscribed_angle - Inscribed Angle, Wikipedia Web 
Site. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 21 

 
 
 
 
 
 
 
 
 
 
Biographical Sketch 
 
Brian Heisler is a mathematics major who plans to fulfill the requirements for 

teacher’s certification upon graduation. He has always enjoyed mathematics, from the 

time he was in elementary school and still today. After he graduates from Stetson, he 

will pursue his Master’s degree in Education, and find a teaching position at a Florida 

high school. He hopes to teach either Algebra I or II, or Pre-Calculus, as numerical 

and algebraic mathematics are his favorite. 

Sports have always been a major part of his life, and hopefully will remain as such in 

the future. Running has quickly grown to be both his best and favorite sport, starting 

the summer after his 7th grade year, and have continuing to this day. Currently, he 

runs for Stetson’s cross country team as one of the top runners. He really enjoys 

competing in races, and has grown to find that distance is definitely his strong point 

in the sport. 

One of his favorite hobbies is Texas Hold ‘Em poker. He loves to play in large 

tournaments to test my skills and patience, and tries to play when he has free time. 

When he is not doing homework, running or playing poker, he enjoys spending time 

with his friends and family. He takes comfort in this time, knowing that he has people 



 22 

in his life who care about him and love him, and who will encourage him through 

anything he may face. It truly is a great feeling. 

 

 
 

 
 


