
ANALYSIS OF RUMMY GAMES:
EXPECTED WAITING TIMES AND

OPTIMAL STRATEGIES

CHRISTOPHER FINKLE

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT
OF MATHEMATICS AND COMPUTER SCIENCE OF STETSON

UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF BACHELOR OF SCIENCE

STETSON UNIVERSITY
2017

Contents

1 Introduction 2
1.1 Background and Objective . 2
1.2 Games of the Rummy Family 3
1.3 Expected Value and Expected Time 4
1.4 Existing Literature . 6

2 A Computational Approach 6
2.1 The Combinatorial Explosion of Rummy 6
2.2 The Strategy of Dynamic Programming 7
2.3 Introduction of Simplifying Assumptions 8
2.4 The Bellman Equation . 10
2.5 Modifying the Bellman Equation to Describe Rummy 11
2.6 Iterating Over the Set of Hands 12

3 Three-Card Rummy 14
3.1 A Combinatorial Implosion . 14
3.2 Results . 16

3.2.1 Analysis of Results for 3-Card Rummy with Aces Low 16
3.2.2 Analysis of Results for 3-Card Rummy with Aces High

or Low . 18
3.2.3 Analysis of Results for 3-Card Continuity Rummy . . . 19

4 Four-Card Rummy 21
4.1 Combinatorial Regrowth . 21
4.2 Analysis of Results for 4-Card Continuity Rummy 21

5 Approximation and Least Upper Bounds 23
5.1 An Illustration of the Bounding Process 23
5.2 Implementation of the Approximation Algorithm 24
5.3 Approximation of 3-Card Rummy with Aces Low 26
5.4 Approximation of 4-Card Rummy with Aces Low 29
5.5 Approximation of 4-Card Rummy with Aces High or Low . . . 32

6 Future Research 33
6.1 7-Card Rummy . 33
6.2 Other Statistical Measures of a Given E 34
6.3 More Accurate Simulation of Actual Games 35

7 Appendix 35
7.1 C++ Code Sample - Hand.cpp 35
7.2 Summary of Results for 3-Card Continuity Rummy 38
7.3 Summary of Results for Approximations of 3-Card Rummy

with Aces Low . 39

References 41

2

List of Figures

1 Summary of E for 3-Card Aces Low 18
2 Summary of E for 3-Card Rummy with Various Rules 20
3 4-card Wrap . 22
4 3-Card Ace Low Approximation with Tolerance 1 vs. Actual . 27
5 Residuals for Approximation with Tolerance of 0.5 28
6 Residuals for Approximations with Various Tolerances 28
7 Calculation Time vs. Tolerance (log scales) for 3-Card 29
8 Approximation of E for 4-card Rummy with Tolerance of 1 . . 30
9 Estimated E for 4-Card Rummy with Various Tolerances . . . 31
10 Estimated E for 4-Card Ace Low Rummy with t=0.001 31
11 Time vs. Tolerance for 4-Card Approximation 32
12 Comparison of Rule Sets for 4-Card Rummy 33

1

Abstract

EXPECTED TIME TO VICTORY IN GAMES OF THE
RUMMY FAMILY

By
Christopher Finkle

Advisor: Dr. Erich Friedman
Department: Mathematics and Computer Science

We will examine card games of the rummy family. Specifically, we
will attempt to find the expected waiting time before a given hand goes
rummy. This, in turn, will lead to the ability to make optimal decisions
about which cards to keep and which to discard to reach rummy most
efficiently. We will use the techniques of discrete probability and
expected value to perform this analysis. The calculations are executed
using high-performance C++ code.

Initially, the project will deal with artificially simplified games of
the rummy family in order to idealize our core technique. We will,
for example, consider a game of 3-card rummy which is assumed to
be played without an opponent and with replacement of discards in
the deck. After this, larger games are considered, as are more efficient
methods for acquiring approximations and upper bounds for expected
value.

1 Introduction

1.1 Background and Objective

The ability of computers to ‘solve‘ human games of skill has increased greatly
in tandem with processing power. Simple games like Checkers have been com-
pletely solved by exhausting the game states to determine the optimal move
to counter any choice made by an opponent, while algorithmic approaches
have allowed computers to eclipse the skills of the world’s best Chess and
Go players despite the games not being solved in the same sense as Check-
ers, or even solvable using the resources available to human society. While
artificial intelligences (AIs) designed to play specific games have continuously
improved their abilities in contests of pure skill, their prowess in games which
incorporate elements of chance is less assured.

2

We seek to shed light on one such class of card games those of the Rummy
family. We believe it may be possible to probabilistically solve certain types
of Rummy game so that the best possible decision (i.e. the decision which
minimizes the expected time to Rummy) for any game state is known. Such
a solution would not be a deterministic one like the solution of Checkers,
but it could shed light on the nature of the game and suggest pathways to a
human-beating AI all the same.

1.2 Games of the Rummy Family

The history of Rummy-like games stretches back centuries, perhaps even
longer than the existence of the standard deck of playing cards itself. The
earliest observed game with Rummylike features come from China, where the
tile-matching game Mahjong and the card game Khanhoo appeared during the
middle part of the second millennium. The lineage of Khanhoo continued with
the Mexican game Conquian, the predecessor to all subsequent Rummy-like
games (Parlett, 1978). Today, Rummy variants number in the thousands,
with the most common being Straight Rummy and Gin Rummy (though each
of these in turn has many variants). A few familiar examples are Canasta,
Rummikub, and Tonk.

The defining features of a Rummy-like game are its mechanic and its
objective. The mechanic is known as draw-and-discard on each turn, a player
draws a set number of cards (usually 1) into his hand and then discards a set
number of cards (also usually 1) from his hand. Sometimes it is possible to
pick up the card which the opposing player has just discarded. In this manner,
hands evolve into each other one card at a time. The objective, meanwhile, is
known as melding. To meld is to lay down a collection of cards, either a set
(three or four cards of the same rank) or a run (three or more cards of the
same suit in sequence). On a given turn, cards which cannot be incorporated
into a meld are known as deadwood. The combination of this mechanic and
objective makes the Rummy family well suited for mathematical analysis, as
there is only a single decision to make on each turn (which card to discard)
and each decision must be made with a single well-defined goal in mind
(melding). Indeed, while many variants exist which complicate the nature
of melding with desynchronization and complicated scoring systems, we will
focus almost exclusively on a variant called Straight Gin Rummy, in which a
player can only go out if all of the cards in their hand can be incorporated into
melds simultaneously, because this is mathematically speaking the simplest

3

goal possible for a Rummy-type game.
Some of the Rummy Familys rule variations are worth considering in more

detail. One of the most basic concerns the treatment of Aces. Commonly, they
are low-valued, which means that only runs like A23 are allowed. However,
some players prefer to count them as low or high, making A23 and QKA runs
valid. Another variant, attested as Round-the-Corner or ContinuityRummy
is even more forgiving, allowing runs to wrap around through the Ace, e.g.
KA2 (Gibson). The myriad symmetries present in Round-the-Corner Rummy
make it especially amenable to mathematical analysis, as we shall see later.

1.3 Expected Value and Expected Time

The expected value of a discrete random variable is the probability-weighted
average of all possible values. For a discrete random variable , the expected
value will be the sum of the products of the possible values of X with their
respective probabilities of occurring. We write

E(X) =
∑
x

xP (X = x).

We are interested in the expected value of one variable, Y , relative to
another random variable X.

Theorem 1.
E(Y) =

∑
x

E(Y |X = x)P (X = x).

Proof. Using the definition of expected value we write

E(Y) =
∑
y

yP (Y = y).

We introduce X by noting that P (Y = y) =
∑

x P (Y = y ∩X = x) for
any given X. Substituting, we find that

E(Y) =
∑
y

y
∑
x

P (Y = y ∩X = x).

Rearranging gives us

4

E(Y) =
∑
y

∑
x

y
P (Y = y ∩X = x)

P (X = x)
P (X = x).

The Law of Total Probability tells us that P (Y =y∩X=x)
P (X=x)

= P (Y = y|X = x).
Substituting yields

E(Y) =
∑
x

∑
y

yP (Y = y|X = x)P (X = x),

and another application of the definition of expected value suffices to show
that

E(Y) =
∑
x

E(Y |X = x)P (X = x).

�

This result will form the basis for our analysis of expected times, as the
expected time to rummy of a hand, E(Y), will be given by the sum of the
expected values of that hand given each card x in X, the probability space of
available cards.

Another calculation of interest is that of expected time. For this quantity,
the simplest scenario to consider is a trial which will either succeed or fail
with a certain probability. If each successive trial is independent of all the
previous ones, we call the probability distribution of this trial geometric,
and the variable which describes its outcome is a geometric random variable.
Consider a geometric random variable with success probability p. We wish to
find the expected time to success.

Theorem 2. For a geometric random variable X with success probability p,
the expected time to success is 1

p
.

Proof. Let T (X) be the expected time it takes for X to succeed. The
probability that X is successful on time step n is (1 − p)(n−1)p. The value
of such an outcome will be n, since that is the time it took to succeed. So,
using our definition of expected value we write

E(X) =
∞∑
n=1

(1− p)(n−1)pn =
p

1− p

∞∑
n=1

n(1− p)n =
p

1− p
1− p

[1− (1− p)]2
=

1

p
.

5

The penultimate equality comes from the known relation
∑∞

x=1 xr
x =

r
(1−r)2

. (Saeed, 2005). This result will be useful in verifying some of the
simplest results achieved by our later approach.

�

1.4 Existing Literature

A survey of scholarly articles related to Rummy games reveals that a project
like ours has not been attempted or at least, if it has, it has not been
published. However, attempts have been made to develop Rummy-playing
Artificial Intelligences (AIs) using bottom-up techniques, rather than the
top-down enumerative approach we intend to pursue. Specifically, we look
to a paper by Kotnik and Kalita, who employed two different methods of
machine-learning to develop a Rummy-playing AI (Kotnik & Kalita, 2003).
Their approach is decidedly, pointedly agnostic about the finer points of the
games structure. The AI sees game states, decisions, and its own slowly-
refined value function relating the two. There is no knowledge of the rules of
the game built into the value function. There is no notion of sequences, sets or
deadwood. The AIs built using the teams machine learning (ML) techniques
showed improvement relative to a random player, but they were still soundly
beaten by humans.

While intriguing, this machine-learning oriented approach elides exactly
those mathematical features of Rummy which we intend to investigate. While
Kotnik and Kalitas work may offer little illumination of our specific path
forward, it does serve as a goal we ultimately seek to match. If it is possible
to develop a mathematically-determined policy function for a rummy game,
rather than a ML-determined one, then that development would be the holy
grail of our research.

2 A Computational Approach

2.1 The Combinatorial Explosion of Rummy

The problem of evaluating the expected time to rummy of a given rummy
hand is one complex enough that even with the immense capabilities of
modern computers, a brute force strategy is doomed to failure. Attempts to
evaluate hands in a holistic sense are apt to induce a combinatorial explosion

6

there are so many factors multiplying the complexity of the calculation that
it rapidly becomes impossible to carry out via brute force.

The total calculation to find the expected value of a single hand would
involve running through an unfeasibly large number of paths of possible cards
and decisions indeed, we would have to evaluate the expected value for every
possible sequence of cards which might be given to us over the course of the
game. For a typical game of ten-card Rummy played with a standard deck,
this would entail finding the expected time to rummy for

(
42
10

)
· 32! possible

arrangements of the remaining 42 cards (as our outcome can be affected by
the subset of 10 cards which ends up in the second player’s hand and by the
order of the remaining 32 cards in the deck which we will draw from during
the game). Furthermore, we have no way of knowing which discard decision
will be optimal at a given turn on a given path, so we will have to evaluate
1116 possible sets of discard choices for each of the paths (since the game can
take up to 16 turns and on each turn we have a choice of 11 cards which
can be discarded). Then we must recall that all of this was for a single hand
of which there are

(
52
10

)
possible. All in all, to completely solve the game of

10-card Straight Gin Rummy would require us to perform expected value
calculations on 2.81 · 1071 game states a task which is clearly infeasible with
even the highest-powered supercomputer.

Reducing the size of the hands fails to alleviate this problem in fact, it
makes the explosion worse. By putting more cards back in the deck, dealing
with smaller hands increases the number of possible game states found by
this method of calculation by orders of magnitude.

2.2 The Strategy of Dynamic Programming

For problems of great complexity, a strategy which is often useful is the
decomposition of one large problem into several smaller subproblems, whose
solutions can then be stored and called upon as needed in a process known
as memoization. In practice, applications of dynamic programming appear in
problems of optimization (what is the highest-valued path through a grid of
values?) or enumeration (how many ways can we create a value from a set of
coins?).

It is our hope that by employing the techniques of dynamic programming,
the complexity of the problem of solving Rummy can be reduced greatly
(though perhaps not greatly enough to put it into the realm of possibility on
consumer-grade hardware). It is perhaps obvious where memoization may

7

be applied in our process. The immense brute-force operation above would
ultimately employ the formula in Theorem 1 by summing the expected values
for a hand over the set of pairs of the possible sequences of future draws and
the possible sequences of future decisions. The central insight which allows
us to deploy dynamic programming techniques is that each combination of
possible future card and possible future decision leads to exactly one of the(

52
10

)
possible hands. From a starting hands there are a mere 42 possible draws,

each of which leads to 10 possible new hands. If we were to know the expected
values of each of these hypothetical hands, we could choose the minimum
expected value (E) possible for each card and thus sum our probability over
only 42 values, which is eminently feasible. The expansion of this technique
to encompass every hand again brings difficulties of scale, but the reduction
in complexity between

(
52
10

)(
42
10

)
· 32! · 1116 and

(
52
10

)
· 42 is certainly noteworthy.

2.3 Introduction of Simplifying Assumptions

The keen-eyed reader may note that our scheme does not entirely preserve the
complexity of the task at hand. As far as a player of Rummy is concerned, she
has more available knowledge than simply the contents of her hand she also
knows which cards have been discarded. To see why this matters, consider
a hand in which the player possesses two complete melds totaling 7 cards,
plus the 2♥ , the 2♦ and the 3♦. In this case, there are four cards - A♦,
4♦, 2♠ and 2♣ - which can complete the gin rummy and win the game in
a single turn. At the start of the game, these cards are 4 out of 42 cards
whose positions are unknown, and thus the probability of drawing any one
of them is 2

21
. If she does not draw one of the four, her optimal strategy is

to simply discard the newly-drawn card and return to her initial state. A
naive calculation of expected value using the result of Theorem 2 leads us to
believe that for such a hand, E = 21

2

But now imagine that the player holds this hand not at the beginning of
the game, but several turns in and that she has seen each of the four cards
which could provide her with Rummy discarded by her opponent, taking
them out of circulation. Now, assuming those cards are out of circulation,
her best strategy is undoubtedly to begin discarding the deadwood in favor
of newly-drawn cards in the hopes that new potential Rummies will emerge.
As paths are closed off by discarding, it is possible for a hand with a very low
at the beginning of a game to become no better than completely disjointed
deadwood. In other words, for a given hand, E is not solely determined by

8

the contents of the hand; it is also affected by the complete game state on a
given turn.

To perform our expected value calculations for each hand for each game
state would end up creating a problem of exactly the same complexity as our
initial brute force strategy dynamic programming would not help us at all.
We need to be able to assume that expected value results we found for our
hypothetical hands are still valid despite the fact that there is by definition
a change in game state as we proceed from one hand to another by taking a
turn, since we have now discarded a card that was not discarded before.

In order to get around this issue, we will quite simply ignore it for the
time being. We feel that this is justified for several reasons. First, it is still of
interest to know the expected value of all hands in the starting game state,
which is what our dynamic programming approach will most easily be able
to calculate. Second, once our model is complete it should be possible to
tweak it to calculate the best decision for any given non-starting game state
in roughly the same amount of time that it takes to calculate for the starting
game state (perhaps less!). The problem is not that calculating E for a given
hand and game state is impossible, it is that there are so many game states
that enumerating all of them beforehand is impossible. The final reason,
however, is perhaps most compelling in many games of Rummy, a card, once
discarded, is not actually out of the game forever. So long as neither player
wins within 16 turns, the discard pile will be shuffled, turned over, and used
as the draw pile. In effect, this means that there is a constant churn of cards
over a long enough time scale. The situation for our hypothetical player above
is not quite as hopeless as it seemed, and she can still hope that one of the
four cards will arrive she just knows that it will take a bit longer. Over the
vast array of possible game states, we conjecture that the temporary out of
circulation effect of discards will mostly be a wash, though of course this is a
rich area of potential future investigation.

For all these reasons, we will now introduce a vastly simplifying assumption
that makes our dynamic programming approach work at all: we assume that
after being discarded, each card is placed directly back into the deck (again,
this effect occurs in actual games, just less uniformly). Furthermore, we treat
our opposing player’s hand as an extension of the deck, since we have no way
of knowing which cards are in which in other words, we ignore the opposing
player entirely for the time being.

The fact that the player is a cipher who places discards directly back into
the deck face down means that we clearly cannot pick up our opponent’s

9

discard. This reduces the number of decisions the player makes each turn
from two to one. We may reintroduce this mechanic later, but for now it
does not factor into our calculations. After all, the decision whether or not to
choose the discard is based on whether its expected value is better than the
expected value of a random draw, which is the very thing we seek to analyze
in the first place. The knowledge of whether it is optimal to draw the discard
will be predicated on our initial findings which ignore that same mechanic.
With these assumptions in place, we are free to begin our exploration of how
dynamic programming applies to games of the Rummy family.

2.4 The Bellman Equation

The Bellman equation, named for its inventor Richard Bellman, is a recur-
sive functional equation which serves as a mathematical formulation of the
technique of dynamic programming as it relates to optimization. Bellman’s
approach relies on a form of backward induction starting with best of all
possible outcomes, repeated application of the Bellman equation allows one
to reason out the best decision possible for each preceding time step until
some arbitrary starting state is reached. In order to make its decision at each
time step, the Bellman equation relies upon an objective value function V (x)
which must somehow be optimized for a state x.

Bellman’s formulation relies on a number of other functions as well. What
follows is an informal tour of the equation as it is ultimately derived; its recur-
sive form is intuitive even without first seeing the derivation that rigorously
proves its validity (Bellman, 1957).

First, there is the decision function Γ(x) = {a1, a2, . . . , an}, the set of
decisions available from the state x. Each decision we can make will send us
to a new state, in a process governed by the transformation function T (x, a).
It is here that we introduce recursion, for this new state will have its own
value function, which we can find using V (T (x, a)). In some situations, we
will care less about the value of each successive future generation, a quality
of the decision making process known as impatience. When our decision-
making process is impatient, we multiply the future value by a discount factor
0 < β < 1. But what are these future values being discounted against?
That would be the immediate payoff function F (x, a), which tells us how our
value function will change immediately should we make decision a in state
x. Because its consequence is immediate and unavoidable, it has no discount
factor.

10

Let us put all of this together. Recall that we are seeking to optimize the
value of V (x). For the general case, let us assume that this means maximizing
it. What are we maximizing? The values of outcomes, both present and
future, as determined by decisions. The functions above describe how we find
those outcomes. So, we write:

V (x) = max
a∈Γ(x)

{F (x, a) + βV (T (x, a))}

This is the recursive formulation of the Bellman equation. While its
notation may be abstruse at first, it does an excellent job of formalizing what
at first seem to be strictly intuitive or qualitative notions about choice and
value. It also happens to be simultaneously more general and less flexible
than we need it to be to break down a Rummy game. We can now set about
tinkering with its structure to suit our needs.

2.5 Modifying the Bellman Equation to Describe Rummy

Perhaps the most obvious change is this: the optimization of our value
function for a given hand will entail minimizing, rather than maximizing, the
time to Rummy. So, with little change in the actual meat of the equation,
we will write V (x) = mina∈Γ(x){F (x, a) + βV (T (x, a))}. The mechanics of
the game affect the equation as well. In non-Gin games, where melds can be
laid down before the end of the game, an impatient decision process might
make sense. However, the optimal decision-making process for Gin Rummy
is patient there is no payoff possible until the game ends, so our current turn
ought not be privileged over future turns. They all contribute to our value
function equally. When the decision making process is patient, we let β = 1,
ultimately ignoring it.

The deferred reward of Rummy greatly simplifies our immediate payoff
function as well. F (x, a) takes a game state and a decision, which in our case
will be which card to discard. No matter what, discarding a card will complete
a turn, thus increasing V (x) by precisely 1. Even if the decision allows the
player to go Gin, he has still taken one turn to do so. This simplicity of the
payoff structure lets us define F (x, a) = 1∀x∀a, which means in practice that
we can replace it with the constant 1 in all cases. With these substitutions in
place, we can now write a more specific version of the Bellman equation:

V (x) = min
a∈Γ(x)

{1 + V (T (x, a))}

11

It is clear from our strategy that the game states x are in fact just stand-ins
for hands h. In fact, we might as well just refer to our game states by the
hand they entail, such that we write V (x) = E(h). Now we can attempt to
marry our understanding of expected value with our understanding of the
Bellman equation, to find a formula which encompasses the stochasticity and
determinism of the game, the draw and the discard (in that order).

We are concerned with the value function E(h) of an n-card hand h consist-
ing of cards {h1, h2, . . . , hn}. On our turn, there is a random distribution of
cards which can be drawn, X, which contains each card not in h, all weighted
with equal probability. In Theorem 1, we use the notation E(Y |X = x) to
mean the expected value of a variable Y given a predetermined outcome for
another variable X. We wish to convey a similar sentiment for our draw-
dependent functions in the Bellman equation: what choices are available
from a hand h after we have drawn a card x ∈ X? What transformation
function will tell us the results of this decision? The (h|X = x) notation is
cumbersome, so we will employ a different notation to indicate that it is given
that X = x . We will say that a given x ∈ X will provide us with a set of
possible actions Γx(h) = {a0, a1, . . . , an}, where decision ak is the action of
discarding hk if 0 < k ≤ n and discarding the new card x if k = 0.

Finally, we can similarly define Tx(h, a) to be the n-card hand that results
from making decision a ∈ Γx(h) with hand h and new card x. Note that for
any x, h, and a, Tx(h, a0) = h. Since the value which we are optimizing is
expected value, we can draw on Theorem 1 and rewrite it as:

E(h) =
∑
x∈X

min
a∈Γx(h)

{1 + E(Tx(h, a))}P (X = x)

2.6 Iterating Over the Set of Hands

Intuitively, since there is a deterministic E(h) for each hand h ∈ H, we should
be able to apply partial order to H using E. Specifically, we say that h1 ≤ h2

if E(h1) ≤ E(h2).

Theorem 3. For a hand h0 ∈ H, E(h0) is determined only by the values of
the hands in the set {h ∈ H|h < h0}.

Proof. We will use induction. For our base case, consider the hands {h ∈
H|h is Rummy}. By the rules of the game, we can end the game before even
taking a turn, so E(h) = 0 regardless of our decision making structure.

12

Now, assume that there is some n-card hand h0 for which we know all
expected values E(h) for values of h in the set {h ∈ H|h < h0}. We wish to
show that our modified Bellman equation can determine E(h0) using only
this information. Since our equation is a sum, we seek a way to reduce each
term of the sum either to a constant or a term of order E(h0). If this can
be achieved our equation will be linear and of one variable, and thus easily
solvable.

This means that for each card x ∈ X, we need to know the value of

min
a∈Γx(h0)

{1 + E(Tx(h0, a))}P (X = x)

either as a constant or in terms of E(h0). P (X = x) is always a constant
multiplier, so we merely need to establish the value of the min function. For
a given card x, there are two possible cases. If it is possible for the card to
improve our hand, then the value of the min function is a known constant
- since any improvement will have a lesser E, it will previously be known
according to the Inductive Hypothesis.

The other case is that x does not improve our hand. No matter what
we discard, the resulting hand will be no better than h0. Since Tx(h0, a) ≥
h0∀a ∈ Γx(h0), it follows that mina∈Γx(h0){1 + E(Tx(h0, a))} = 1 + E(h0), a
value which can always be achieved by taking a0 ∈ Γx(h0), which as noted
above, will result in Tx(h0, a0) = h0. If this is the case, the value of the x
term of the sum will be P (X = x)(1 +E(h0)) = P (X = x) +P (X = x)E(h0),
which are a constant and a term of order E(h0) as desired.

Thus, no matter what, our equation can be made to consist of one variable,
allowing it to be solved using only information about hands with lower E.
The inductive step has been achieved. Starting from those hands which are
Rummy, we can always solve for those hands with the next-smallest E using
only smaller Es, a process which will eventually find E(h)∀h ∈ H. �

With the theoretical proof that our approach works finally in place, we
now turn to the practical. The ugly truth is that this calculation, evaluating
each term of the Bellman sum using the knowledge we have, reducing it to the
smallest known value or 1+E(h), and then solving the equation for E(h), can
be performed for any h ∈ H regardless of whether the expected value of each
member of {h ∈ H|h < h0} is known. Additionally, without foreknowledge of
the value of E(h0), we cannot actually know whether {h ∈ H|h < h0} ⊆ {h ∈
H|E(h) known} before we evaluate the Bellman sum. (That the converse is

13

true follows from the recursive structure of our solution since we must know
all lesser Es to determine an E, it follows that at a given solution step all
known Es are less than all unknown Es). Since the foreknowledge of E for
all members of {h ∈ H|h < h0} was a precondition for finding a valid result
according to Theorem 3, this presents something of a problem.

Fortunately, there is a way to figure out after the fact whether our solution
for a given hand is accurate. Let us first describe in more precise terms
what form the solution takes. Since the procedure calculates a potential
value for E(h) which may or may not be correct, let us call its result Ehyp(h).
For a given hand h0, let X ′ = {x ∈ X|∃a ∈ Γx(h0), E(Tx(h0, a)) is known}.
Then by construction ∀x /∈ X ′,mina∈Γx(h0){1 + E(Tx(h0, a))} = 1 + E(h0).
Rearranging all terms of the sum to combine all instances of E(h0), we will
find that

Ehyp(h0) =
(52− n) +

∑
x∈X′ mina∈Γx(h0){E(Tx(h0, a))}

|X ′|
.

Since each of the values involved is always known, we can always calculate
Ehyp(h0) for all h ∈ H 3 E(h) unknown. How can we know for which hands
Ehyp(h) = E(h)? This is the same as asking for which values of h0 were
the Es of all members of the set {h ∈ H|h < h0} known. When we find
Ehyp(h)∀h ∈ H 3 E(h) unknown, the answer is simple:

For convenience, let H ′ = {h ∈ H|E(h) unknown}. If Ehyp(h0) =
minh∈H′{Ehyp(h)}, then any h ∈ H 3 h < h0 is not in H ′ and thus
is known, which satisfies the precondition of Theorem 3 and shows that
Ehyp(h0) = E(h0). If Ehyp(h0) 6= minh∈H′{Ehyp(h)}, then ∃h ∈ H 3 E(h) <
E(h0)∧E(h) ∈ H ′ (e.g., any h for which Ehyp(h) = minh∈H′{Ehyp(h)}). Thus,
Theorem 3 is satisfied only for those h for which Ehyp(h) = minh∈H′{Ehyp(h)}
during a given iteration. Using this fact, we can at last iterate over the set of
hands.

3 Three-Card Rummy

3.1 A Combinatorial Implosion

With an overall strategy now rigorously prepared in theory, we want to put it
into practice. In order to practice on a manageable scale, we seek the smallest
testing grounds possible. Clearly 10-card Rummy is out, as simply listing all

14

the possible hands would take up several gigabytes of space. 7-card Rummy,
another variant sometimes found in the wild, is not nearly so cumbersome,
but it still has hundreds of millions of hands to check against each other. To
find a manageable testbed we will have to invent our own Rummy game that
narrows things down much further.

First, the essential elements we must have for our game to still be a
Rummy Game: a turn must consist of drawing and discarding a card, and the
goal must be to create a meld. Ideally, we dont want to change the definition
of a meld, so the size of the smallest possible sets and runs, three cards,
becomes the minimum number of cards we can deal with.With this in mind,
Three Card Rummy is born.

Since we are defining the rules of a new Rummy variant, the simplifying
assumptions above can now shed their approximate nature and become the
official rules. We let 3-Card Rummy be played on the assumption that when
cards are discarded, they are immediately placed back in a random position
in the deck of cards yet to be drawn. For now, we assume that our opponent
either does not exist, or behaves completely randomly, so that his hand can
be considered a mere extension of the deck from a probabilistic point of
view. This game is not fun, but mathematically speaking it is immensely
manageable.

To wit, the number of hands whose Es we are now attempting to enumerate
has been slashed to

(
52
3

)
= 22, 100. The fact that we can even write this

number without resorting to scientific notation is a good sign. Even so, the
problem is not trivial. A brute force approach (note that this is distinct from
the brute force approach described in section 2.1; our problem is of such
difficulty that two entirely different magnitudes of brute force may be brought
to bear on it) will perform |H| · (52n) · n calculations for each iteration.

To break down that number, for each hand in H ′, for each card in X, for
each possible decision in Γx(h), we must look up that future hand to see if
it is locked in, and if it is, to use its E in the Bellman sum. On reasonably-
powerful consumer grade hardware, the computation time required for these
calculations is not unreasonable, but neither is it negligible. For 3-card
Rummy, one iteration near the beginning of the process will involve over a
million computations.

15

3.2 Results

3.2.1 Analysis of Results for 3-Card Rummy with Aces Low

Even within the greatly simplified framework we have defined for 3-card
Rummy there are still changes to be made. The most salient concerns the
treatment of Aces. For our first area of analysis, we have selected the version
in which Aces are treated as low cards, meaning that runs of A23 are valid,
but not runs of QKA. The implications of this choice will become clear in
comparison to other rule sets to be explored later, but for now we will examine
the results in a vacuum.

Let us look at our programs first line of output, summarizing the results
of our first iteration through the dynamic programming process:

240 hands like 2♣ 2♦ 3♣, E = 12.25

There are a few things to note here. First is the relative tidiness of our
E value. It is 49

4
= 52−n
|X′| = 1

p
, as described in Theorem 2. This simplicity is

a consequence of the fact that we are examining the very first iteration of
the program: in other words, these are the very best hands, those which are
closest to being Rummy. From hands like this, the player either goes Gin,
or rejects the new card and keeps hoping. There are no incrementally better
hands to seek. This reduces the decision structure to a simple binary variable,
which makes it amenable to a naive calculation of E as described in Theorem
2. The situation is very similar to the one described for our hypothetical
player in section 2.3.

The second thing we notice is that there are fully 240 hands which share
this , greater than 1% of our total. We call this set of 240 hands an equivalence
class within the set of hands, as they are all equivalent under the partial
order defined in section 2.6. Our results will all be summarized in terms of
equivalence classes.

The sizes of these equivalence classes varies widely, but the essential
symmetry of suits assures that they will never contain less than 4 hands, and
in fact that their cardinality will always be a multiple of 4. Sometimes, they
will be very large, as in the 12th iteration of the program:

544 hands like A♣ 5♣ 6♣ with E = 15.228977272 (1400 total)

This is the largest equivalence class under ace-low rules. (Note that the E
values quoted for hands past the first generation are limited by the precision

16

of the computers floating-point arithmetic, so they are not exact, just very
close to it). In total, this version of the game has 688 equivalence classes
including the class of Rummies, with a median size of 24 hands. The median
hand is like:

8♦ 9♠ J♦ with E = 18.223831446346434

A final equivalence class which may be of interest is the worst one. Which
type of hand has the highest expected time to Rummy? Intuitively, we expect
it to contain cards which are limited in the number of runs in which they can
appear that is, aces (which can appear only in A23) and kings (which can
appear only in JQK). Having taken on each of these types, we complete the
hand with the next-most limited types of cards, 2s and queens (each of which
can appear only in two types of runs, whereas all other cards can appear in
three). Furthermore, our intuition tells us that these cards should be of three
different suits, to maximize the difficulty in building melds from them. This
is exactly what our program finds, with the worst hands being those like:

A♠ Q♥ K♦ with E = 19.18005509646004

This information is more than a curiosity, since it is also the upper bound
on s for all possible 3-card Rummy hands. We never expect to draw more
than 20 cards on average, with optimal play.

While the complete description of all 688 equivalence classes, much less all
22,100 hands, is too cumbersome for inclusion in this paper, we can summarize
the results graphically. Figure 1 plots E against the cumulative number of
hands calculated.

We can make some qualitative observations based on this graph. The
expected time increases rapidly for the first few iterations, then levels off with
values slightly greater than 15 for more than 4,000 hands. We might think
of these as good hands, while all the ones that come after might be thought
of as bad hands. Such subjective simplifications are mere heuristics for now,
but they may come in handy as we seek ways to simplify our understanding
of larger and more complex games.

17

Figure 1: Summary of E for 3-Card Aces Low

3.2.2 Analysis of Results for 3-Card Rummy with Aces High or
Low

In the future, we will concentrate mostly on Aces Low rules since they are
the most natural of the Ace conditions. However, the relative invariance of
the results under Ace High rules is somewhat interesting. In increasing the
flexibility of the Ace, Two, King, and Queen cards, the Ace High rules some-
what reduce E values overall. By the end of the calculation the accumulated
change results in this smaller lower bound:

12 hands like A♣ 2♦ K♦ with E = 18.861678332 (22100 total)

Those hands which consist of A2K of three different suits immediately
precede this group, but with an E that differs in the hundredths place.
When many equivalence classes are separated by orders of magnitude less,
the difference is clearly significant. The reason for this distinction is not
intuitively obvious, but it is proven true nonetheless.

18

3.2.3 Analysis of Results for 3-Card Continuity Rummy

Continuity, or Round-the-Corner Rummy, vastly expands the symmetries that
govern our equivalence groups. Since each card value can be incorporated into
a full three runs, there are no least-useful cards like the aces and kings were
before. This removes the end effects that we used to intuit the worst hands
for other rule sets, and reduces the qualities governing a hands goodness or
badness to the relative, rather than absolute, positions of the cards it contains,
and the relative homo- or heterogeneity of their suits. With symmetry over
the suits and the values, the minimum size of an equivalence class is now 52
hands. The largest equivalence class balloons up to:

1768 hands like A♣ 2♣ 3♦ with E= 15.228977272 (2912 total)

Unlike before, it is the set of hands solved by not the 12th but the 4th
iteration of the dynamic program. The overall scheme of equivalence classes is
even more compressed: there are only 60 of them (as enumerated in Appendix
2). The median equivalence class consists of 312 hands rather than 24 (though
it is worth noting that these numbers do have something in common, as each
is six times the smallest possible class). The form of our highest-E hands is
difficult to intuit, and quite different from what came before:

52 hands like A♣ 4♣ 7♣ with E= 18.24424854000194 (22100 total)

With such radical changes from our other two rule sets apparent in these
metrics, we might question whether the overall contour of the accumulation
curve will be radically different as well. The answer is: not quite. As seen
in Figure 2, the curve for this wrap-around rule set is chunkier, lower, and
slower than the curves for the other two rule sets, but it follows a similar path
overall. There is still the same sudden jump from good hands to bad, though
this one occurs more than 6,000 hands deep rather than 5,000 hands. This
jump is also more precipitous: there are actually no hands whatsoever whose
E begin with 16 under Continuity rules (one class has E ≈ 15.98, the next
has E ≈ 17.01). But as we can see on the graph, it is qualitatively speaking
a very similar jump.

What can we learn from this surprising similarity? It is apparent that the
most important factor in the value of E for most hands is the relative position

19

Figure 2: Summary of E for 3-Card Rummy with Various Rules

and suit of the cards to each other, with absolute end effects only interfering
partially with these more powerful forces. This near-congruence bodes well for
our future efforts to simplify larger Rummy games. The Continuity Rummys
dynamic program took only a half hour to run, a tiny fraction of the time
required for the other two rule sets. If the most influential factor on policy
ought to be the relative values and suits of cards, the construction of our
policy function may be simplified immensely.

It is here that we pause and note that the output of our program, in
aggregate, forms the basis for the hugely complex discrete policy function
for these three rule sets describing games of 3-card rummy. It serves as a
dictionary for evaluating mina∈Γx(h){Tx(h, a)} in all situations, thus finding
what is expected to be the objective best move. While it will not guarantee
a win in all situations, this counts as optimal play; for any hand h0, E will
be reduced from E(h0) to 0 as quickly as possible under the circumstances.
3-card Rummy is solved.

20

4 Four-Card Rummy

4.1 Combinatorial Regrowth

Compared to the efficiency with which 3-card Rummy could be handled,
4-card Rummy sees a rise in complexity. The formula for the number of
calculations which must be conducted remains the same, but with the size of
H having grown to

(
52
4

)
= 270, 725, a typical iteration early in the process

will now require 12 times as many calculations simply because there are 12
times as many hands. Likewise, because of the radically increased number of
potential symmetries, the total number of iterations required will be several
times larger than for 3-card Rummy. The computational times required
become much higher, stretching to the dozens of hours compared to 3-card’s
dozens of minutes.

There are fewer Rummies in the 4-card game, as well. This is due to the
lost flexibility of the sets. Whereas each card value produced four potential
sets in 3-card Rummy, to get a 4-card set requires four-of-a-kind. As a result,
there are only 4 ∗ 10 + 13 = 53 Rummies to start with for Ace Low rules,
57 for Ace High, and 65 for Ace Wrap. In all three rule sets there are fewer
opportunities for ’adjacency’ - the best hands in any rule set are those which
are adjacent to two Rummies, not four, resulting in a first generation E of
52−4

2
= 24 turns.

4.2 Analysis of Results for 4-Card Continuity Rummy

Due to the high symmetry of Continuity Rummy, it was possible to run the
calculation at full precision in a reasonable time frame. We find that there
are 2496 ’best’ hands with E = 24 as mentioned above, slightly less than 1%
of the total. The worst hands are these:

156 hands like A♣ 2♦ 5♣ 6♦ with E = 38.6563243418

Figure 3 illustrates the complete summary of the results. The strictures
of 4-Card Rummy are unforgiving. Games would be expected to last much,
much longer than 3-Card rummy because it is much more difficult to arrange
all four required cards. This indicates that in the games of 7-card and 10-card
Rummy, it would be the acquisition of a 4-card meld which would be the
bottleneck.

21

Figure 3: 4-card Wrap

The resulting output featured 654 equivalence classes as compared to 3-
Card Continuity’s mere 60. The ratio 654

60
≈ 270725

22100
, indicating that the number

of equivalence classes may grow roughly in proportion with the number of
hands. We may conjecture that 7-card Continuity Rummy would have roughly
(52

7)
270725

∗ 654 ≈ 300, 000 such classes - a dispiriting estimate to be sure. Our
approach, while the most rigorous available, may not be readily applicable to
games larger than 4-card Rummy. In fact, even 4-Card Rummy with Aces low
invites difficulties of scale, as we may conjecture that it will require a similarly
greater number of equivalence classes to fully describe. For 3-Card Rummy
the ratio from Wrap to Aces Low was 60:688. If the results for 4-Card are
similar we will have 654

60
∗ 688 ≈ 7000 classes on our hands - hardly a summary

at all.
While our interest began with optimization, it has become clear that

the scale of the problem is such that finding the true optimal solution may
not always be efficient, and that the marginal utility of such aggressive
optimization may not be worth the computational effort. Let us now consider
methods for finding satisficing strategies - those which are good, but not
necessarily perfect.

22

5 Approximation and Least Upper Bounds

5.1 An Illustration of the Bounding Process

Consider a hand h of 3 non-adjacent cards arranged to have the minimum
possible number of potentially-adjacent drawable cards. Under Ace-Low rules,
this would be a hand containing an Ace, a King, and some other card between
4 and Jack. For the sake of illustration, let us declare that these cards are
A♣, 7♦, K♥. For such hand, each of the three cards presents three other
options which could result in a pair of the same value, and there are also
two cards which could result in a dual-ended two-card run (these being 6♦
and 8♦). Once one of these proto-sets or -runs is established, there are two
remaining cards which could complete it.

In order to place an upper bound on E for all hands in H, we may use the
expected value results achieved in Theorem 2 to determine how long it will
take to produce a hand with a valid pair, and then once a pair is established
how long it will take to complete it. Because there are a total of 11 cards
which will give us a pair, we expect it to take 49

11
turns to create a pair. Once

a pair is achieved, we expect it to take 49
2

turns to complete it. As such,
we expect that an upper bound for all hands in 3-card Rummy is around
49
11

+ 49
2

= 29 turns.
As it turns out, this is a very bad upper bound. The true least upper

bound, as mentioned in section 3.1.1, is around 19.18. But the general strategy
here is sound - if we establish how long it takes to get to a known class of
better hand, we can derive an upper bound from the time it takes to reach to
that class of hand and that class’ own E. In essence, we are generating an
approximation by choosing a strategy which is willfully obtuse, intentionally
ignoring potential improvements in exchange for increased simplicity.

How can we refine the strategy? Well, for starters, we need not rely on
getting to just one class of hand. For the hand above there are two cards
which lead to two-card runs which are single-ended (these being 2♣ and Q♥).
Because we are playing with aces low rules, these each have only one card
which can complete them, which gives them an E of 49 in our naive current
scheme. But how are we to integrate this with the other cards that have
different, better future values for E? As it happens, we already have a tool
for such calculation: the Bellman Sum.

23

5.2 Implementation of the Approximation Algorithm

Recall that the general strategy for calculating E was to, for each iteration,
calculate the quantity Ehyp for each h in H ′, then ’lock in’ the value of E for
each h whose Ehyp was equivalent to the global minimum of the current set
of {Ehyp(h)|h ∈ H ′}. When this process was automated, however, allowances
had to be made for the non-arbitrary precision of computer arithmetic. Due
to floating-point errors in the evaluation of the Bellman Sum, hands which
are in fact symmetrical might end up with values for E which differ slightly
beyond the eight decimal place. In order to fix this problem, the program
featured a check not for equality, but for proximity within a certain tolerance.
Here is an example from 3cardRummyLow.cpp (where minE is the minimum
Ehyp for the current iteration:

for(int i=0; i<22100; i++){

if(hands[i]->getE()-minE < 0.0000001 && !hands[i]->getLockedIn()){

hands[i]->lockIn();

locked++;

//output procedure omitted

}

}

The tolerance was hardcoded as 10−8 during the initial implementation to
ensure eight digits of significance in the results. But if all we seek is an
approximation, an upper bound, then the tolerance can be increased to some
arbitrary value like so:

double tol = 0.1; //for example

for(int i=0; i<22100; i++){

if(hands[i]->getE()-minE < tol && !hands[i]->getLockedIn()){

hands[i]->lockIn();

locked++;

//output procedure omitted

}

}

On each generation, this will in effect decide that a hand’s current Ehyp is
’good enough’ if it is within the tolerance range of the current minimum Ehyp

and finalize it prematurely. Then, using the prematurely finalized values it

24

will go on to calculate the next iteration’s Ehyp and so on. This technique
is only useful if the error does not cascade with each successive calculation.
Fortunately we can bound the error for this process as t = tolerance all the
way through to the end.

Theorem 4. For a given tolerance t, the maximum error generated by the
Bellman Sum algorithm for calculating expected time to Rummy will be bounded
by t.

Proof. We will prove by induction. For the base case, consider the first
iteration of the procedure. Those hands closest to Rummy will have their true
E calculated and that E will be the first Emin = minh∈H′{Ehyp(h)}. Now
consider some other hand h0 which will be locked in. It will have Ehyp(h0) <
Emin + t. Because the development of a given hand’s Ehyp is monotonic over
the course of the iterations, the true value E(h0) must be less than Ehyp(h0).
So we have Emin < E(h0) < Ehyp(h0) < Emin + t =⇒ Ehyp(h0)− E(h0) < t,
as desired.

Now, suppose we have an iteration where ∀h /∈ H ′ there is a known
satisficing approximation E∗(h) 3 E∗(h) − E(h) < t. Note that regardless
of the tolerance used to perform the calculation, it will still be the case that
maxh∈H\H′{E∗(h)} < minh∈H′{E∗hyp(h)} at each iteration (i.e., no worse hand
may sneak into the set of finalized hands before a better hand). Because this
is the case, there will be some subset of H ′ for which every element of X ′ has
an associated E∗(Tx(h0, a)). For members of this subset, we will have

E∗hyp(h0) =
49 +

∑
x∈X′ E∗(Tx(h0, a))

|X ′|
<

49 +
∑

x∈X′(E(Tx(h0, a)) + t)

|X ′|
=

49 +
∑

x∈X′ E(Tx(h0, a)) + |X ′| · t
|X ′|

= E(h0) + t.

Indeed, for each x ∈ X we may introduce an error of up to t to the term
E(Tx(h, a)) and still retrieve a result for E∗hyp(h) which is within t of E(h).

Consider those members of H ′ for which not all of the cards that should
be in a proper X ′ have associated future hands that are yet finalized. Let
us say that for a hand h1 there is at least one future hand Tx(h1, am) = hm.
What is the nature of these missing future hands? By definition they are
better than h1. This means that they are also among those hands for which
E∗hyp(hm) < minh∈H′{E∗hyp(h)}+ t, i.e. those hands which are set to be locked

25

in during the current iteration. This implies that E∗hyp(h1)− E∗hyp(hm) < t.
Due to the monotonicity of the progression of Ehyp for each hand this proximity
will translate to their true values as well. The upshot is that for each of the
future hands like hm which ought to add members to X ′ but don’t, we will
not be introducing an error of more than t by assuming instead that each x
generates the hand h1. In so doing we may still solve the sum for E∗hyp(h1) as
before without introducing error of more than t in total, as each individual
term will have error smaller than t.

Since the error will not grow during any iteration, the proof is concluded.
�

What is the practical use of this approximation scheme? Well, since the
errors are bounded by a constant we may produce data which is quite good
while speeding up the process immensely - since each iteration finalizes far
more than one equivalence class worth of hands, the program will execute
more rapidly. This alacrity allowed us to examine the effects of many different
tolerances, from 1.0 to 0.001, on the calculation. Even if there are some
aspects of the above outline which could use further rigor, the empirical
evidence speaks for itself.

5.3 Approximation of 3-Card Rummy with Aces Low

In order to test the validity of this approximation scheme, it was applied to the
already-solved problem of 3-Card Rummy. Even seemingly large tolerances
result in surprisingly accurate results. Figure 4 shows the actual E arranged
in ascending order for Ace Low (the black line) along with the approximations
achieved by iterating with a tolerance of 1.0 (the red line).

With smaller tolerances, the deviations become even more minute, to the
extent that they can barely be seen on a full graph. Figure 5 plots the error
for each hand instead with a tolerance of 0.5, and Figure 6 shows a few more.
In every case tested, the maximum error is significantly less than the tolerance
itself. For t = 1 the greatest error was with hands like 3♣5♣K♣; their upper
bound came out 0.6109 turns higher than their true E. It is not easy to form
an intuition for why this type hand should be less accurate than all the others.
With t = 1 the hands had a mean error of only 0.086. When t = 0.1 the
mean error is 0.019. Finally, when t = 10−3, the maximum error is 2.35 ∗ 10−4

and the mean is smaller still, 1.87 ∗ 10−5. This consistent relationship, with
tolerance greater than maximum greater than mean, is displayed for every

26

Figure 4: 3-Card Ace Low Approximation with Tolerance 1 vs. Actual

tolerance tested - about a dozen in all. The empirical evidence is ample that
our scheme works and produces predictably highly accurate results.

Since the motivation for this approximation was to increase the speed of
our calculation, the next relevant question to pursue is the trade-off between
accuracy and speed. Can we establish a relationship between tolerance and
the time required to complete the calculation? In order to test this notion, we
collected the duration of the calculation for 17 different t values between 0.001
and 1. The results displayed a clear exponential nature. By performing a log
transformation on the data we were able to obtain the following relationship
via a standard linear regression:

time = α ∗ t−0.538

where α is a proportionality constant depending upon the speed of the
hardware. On the machine used to conduct the calculations, we had α = 7.
Figure 7 represents these data and the linear regression deduced from them.

We may use this relationship to estimate how long it will take to execute
the calculation of 4-Card rummy for various tolerances, so that we can decide
which are feasible and useful.

27

Figure 5: Residuals for Approximation with Tolerance of 0.5

Figure 6: Residuals for Approximations with Various Tolerances

28

Figure 7: Calculation Time vs. Tolerance (log scales) for 3-Card

5.4 Approximation of 4-Card Rummy with Aces Low

To start off, let us perform the 4-Card approximation with a tolerance of 1,
the largest viable value. The results are represented as points in Figure 8.

This approximation is much more riotous than the 3-Card data plotted
in Figure 4, with fuzzy clumps of values all along the apparent curve. The
270,672 non-Rummy hands were finalized in 19 cohorts, many of which can
be seen qualitatively on the graph. (Compare this with the 7 cohorts of
3-Card Rummy with tolerance 1). The longest rectangle, fourth from the
right, corresponds with the following program output:

67468 hands like A♣ A♦ 3♣ 3♦ with E = 39.6312457202

The program outputs as representative the minimum E of the entire cohort,
so for the 67,468 hands which were locked in on that iteration, min{E∗hyp}
was 39.6312457.

This program ran in 225 seconds. Extrapolating from our model above,
we would expect a tolerance of 0.001 to take at least 225 ∗ 0.001−0.538 = 9250
seconds. This seems feasible. First, however, let’s try a few more large
tolerances. Figure 9 shows the data in the order it was finalized for three
more tolerances. We can see how it appears to converge towards a central
curve. At this point a note on the appearance of the data is in order: When

29

Figure 8: Approximation of E for 4-card Rummy with Tolerance of 1

dealing with the 3-Card approximations, we could arrange the approximated
data according to the correct ordering of the hands, since we already knew the
true E for each hand. Since we have not solved 4-Card rummy completely, such
ordering cannot be achieved when displaying our approximations, resulting
in the chaotic graphs, since within each cohort the points are arranged left-
to-right in ’card order’ (i.e. the order in which they were constructed by the
triple loop), rather than in any coherent scheme.

In the end, we did run the 4-Card approximation with t = 0.001. The
results of this calculation are presented in Figure 10. We may conclude that
the true contours of the hand space for 4-Card Rummy deviate from this line
by less than 0.001 turns for all hands. The calculation of these data was not
as easy as the exponential model would lead us to expect, however - it took
27,108 seconds, or nearly 8 hours. Indeed, another regression (see Figure 11
based on 7 data points for 4-card Rummy indicates that the correct model
for this more difficult approximation is

time = β ∗ t−0.710

with β = 225 in this case. In the previous model, the time required
to calculate 3-Card Ace Low with full precision was approximately 1980
seconds, a time value which corresponds with the tolerance value 2.77 ∗ 10−5.
(Interestingly, the smallest difference between equivalence classes for that

30

Figure 9: Estimated E for 4-Card Rummy with Various Tolerances

Figure 10: Estimated E for 4-Card Ace Low Rummy with t=0.001

31

Figure 11: Time vs. Tolerance for 4-Card Approximation

game is around 10−7, so this tolerance would not actually be sufficiently
granular to collect all the results). Plugging this same tolerance value into
the new model predicts that a complete explication of 4-Card Rummy with
Aces Low would require 255 ∗ 0.0000277−0.710 ≈ 440000 seconds ≈ 121 hours.
While this would not be impossible to achieve, it is certainly inconvenient and
an order of magnitude longer than any other calculation performed for this
project. Since the edge gained by a refinement of 0.001 turns is unlikely to
change the outcome of a game, we can confidently call the Hand - E dictionary
formed by the output of this approximation a satisficing solution for 4-Card
Rummy with aces low. The output consists of 2609 cohorts in all. The upper
bound for 4-Card Rummy with Aces Low is E = 41.88666.

5.5 Approximation of 4-Card Rummy with Aces High
or Low

We also tested 4-Card Rummy with aces High or Low at tolerance of 0.001.
The results, in comparison with those for Wrap and Ace Low rules, are
displayed in Figure 12. We may make a few observations here. Es for Ace
High and Ace Low are closely married throughout, as they were for the 3-Card
games. By the final cohort of the Ace High calculation, the worst hands are
those with E = 41.3925, less than half a turn better than the maximum E for
Aces Low. As in 3-Card Rummy, both hands exhibit a curious feature that

32

Figure 12: Comparison of Rule Sets for 4-Card Rummy

the final few hands exhibit a large jump above what was a large flat plateau.
However, compared to 3-card we see a decoupling between those two rule

sets and the Wrap rule set; the line strays further faster, and the difference
between the Wrap worst hands and the Ace High worst hands is nearly three
whole turns. This indicates that the predictive value of Wrap bounds to
overall bounds for other rule sets is reduced as the games get larger.

6 Future Research

6.1 7-Card Rummy

We still have not reached our goal of modeling a game that people might ever
actually play, but with the completion of both 3-Card and 4-Card Rummy
the ingredients are there. It is possible to imagine the outline of a scheme
which could result in non-optimal but better-than-random policy function
based on these data. Suppose we seed a list of all

(
52
7

)
7-card hands with

adjusted versions of the known E values for those hands which contain a

33

3-card or 4-card meld. The remaining hands may be more efficiently evaluated
by their proximity to these halfway-complete hands. The implementation
of this program would be highly involved, but in theory it could run in a
reasonable time frame on higher-end hardware.

Already we may generate a very loose upper bound for E in a seven-card
game, in a manner similar to the obtuse method described in section 5.1.
Suppose the player arbitrarily partitions the 7-card hand into a 3-card group
and a 4-card group. The obtuse strategy which generates the bound is this:
the player first completes the three-card meld (an operation known to have
maximum E of 19.18), then moves on to completing the four-card meld (which
has maximum E within 0.001 of 41.887). Even when the player ignores all sorts
of opportunities to optimize, the maximum E is then 19.180+41.887 = 61.067
turns. This bound is quite large compared to the normal length of a Rummy
game, as it would necessitate turning over the deck, a rare event in actual
play (Kotnik & Kalita). Its improvement would be of great interest.

6.2 Other Statistical Measures of a Given E

All this time we have been calculating E, which for each hand is essentially
the mean expected time until Rummy. But what is the variance around
this mean? We could generate a computerized Rummy-playing agent which
follows our policy function at all times and let it play a large number of games.
The number of turns it requires to get to Rummy would hopefully follow some
recognizable probability distribution with a mean at our calculated E, and
we could then investigate the variance and standard deviation for that hand.
With repetitions for many hands we could begin to come to some conclusions
about the variance for all hands.

Once we have these data, more involved analysis of 3-card Rummy as
a game in and of itself could be conducted (though the interest of such
investigations may be limited). In theory, our optimized policy function
represents a player with maximized skill. How does the function fare against a
randomized opponent? How much of the game is skill vs. luck? By generating
agents with policy functions of varying efficacy (e.g. one for each approximate
data set) and playing them off each other we might compare the completeness
of their knowledge against their win/loss ratios and examine the correlation
between knowledge completeness and victory.

34

6.3 More Accurate Simulation of Actual Games

We never made an attempt to correct our erroneous assumption that cards
drawn are immediately replaced in the deck. Because of the efficiency of the
new implementation, it might be possible to create a responsive program that
will recalculate the E for every hand after each discard in light of the longer
time required to reintroduce that specific card to the set of possible draws.
This would be especially feasible for 3-card Wrap, which requires a negligible
amount of computation time.

However, this responsive paradigm will not scale to any sort of larger game.
So another strategy might be to determine a static value-added model which
can predetermine how much of a hand’s ’goodness’ or ’badness’ is predicated
on the presence of a certain card in the deck (and thus a certain future hand
which becomes available). This method would have its own problems, chief
among them the requirement of a huge amount of storage space for large
games, and its mathematical validity is highly conjectural without further
formal investigation.

7 Appendix

7.1 C++ Code Sample - Hand.cpp

In the early part of this semester, much time was spent re-writing the orig-
inal python code into far faster C++ code. In order to create a flexible
program, an object-oriented approach was used in which a single Hand ob-
ject could be plugged into multiple calculations. Below is the code for that
hand, which contains many of the relevant calculations. However, by itself
the Hand object does nothing. The complete complement of other neces-
sary files (including hand.h and, e.g., 3cardapprox.cpp) may be found at
https://github.com/ChrisFinkle/RummySeniorProject.

#include "hand.h"

#include <set>

#include <string>

#include <iostream>

using namespace std;

/* Rummy hand class with methods designed for successive calculation of

expected times to Rummy. This class is multi-purpose; it can hold any

number of cards (though in practice only 3 and 4 are useful). It can also

have any definition of what is Rummy as desired; the isRummy function is

defined in another program that uses Hand and passed in via the constructor,

35

along with a point to an array containing all other possible hands, a map

that serves as a ’guide’ to said array, allowing fast lookup, knowledge

of what size the hand is, and its cards.

*/

Hand::Hand(set<int> cards, int _size, Hand **_allHands, map<set<int>,int> *_idxs, bool (*_isRummy)(set<int>)){

size = _size;

isRummy = _isRummy;

allHands = _allHands;

idxs = _idxs;

cardSet = cards;

lockedIn = isRummy(cardSet);

E = (isRummy(cardSet)) ? 0.0 : 500.0; //500 is a stand-in for a high, unknown value for hands which are not rummy

}

bool Hand::hasSameCards(set<int> compare){

return compare==cardSet;

}

void Hand::assocHands(){

for(int i=0; i<52; i++){

set<int> newSet = cardSet;

newSet.insert(i); //draw a random card

if(newSet.size()>cardSet.size()){ //if card is not in your hand

map<int, Hand*> m; //create map of outcomes by index of card discarded

int j=0;

for(set<int>::iterator it = cardSet.begin(); it!=cardSet.end(); ++it){

newSet.erase(*it); //discard card

m[j] = allHands[idxs->at(newSet)]; //search all hands for new hand, store ptr

j++;

newSet.insert(*it); //put the card back

}

futureHands[i] = m; //store map of outcomes

}

}

}

bool Hand::getLockedIn(){

return lockedIn;

}

void Hand::lockIn(){

lockedIn=true;

}

double Hand::evalE(){

map<int, double> m;

double sum = 0.0;

//iterate over potential hands to draw

for(map<int, map<int,Hand*>>::iterator it = futureHands.begin(); it!=futureHands.end(); ++it){

map<int,Hand*> n = it->second; //possible post-discard outcomes

//among locked-in future hands, if hand not yet stored in m or if hand is lower than value

//currently stored in m under the drawn card, stores E in m.

for(map<int,Hand*>::iterator it2 = n.begin(); it2!=n.end(); ++it2){

if(it2->second->getLockedIn() && (m.count(it->first)==0 || m[it->first]>it2->second->getE())){

m[it->first]=it2->second->getE();

}

36

}

}

//adds up all Es in accordance with Bellman sum

for(map<int, double>::iterator it3 = m.begin(); it3!=m.end(); ++it3){

sum += it3->second;

}

//if any future hands locked in, calculate final value in accordance w/ Bellman sum

if(m.size()>0){

E = (sum+52.0-(float)size)/(float)m.size();

}

return E;

}

double Hand::getE(){

return E;

}

string Hand::prettyPrintHand(){

string st = "";

for(set<int>::iterator it = cardSet.begin(); it!=cardSet.end(); ++it){

string s = "X";

if(*it%4==0){s="C";} //Clubs

else if(*it%4==1){s="D";} //Diamonds

else if(*it%4==2){s="H";} //Hearts

else if(*it%4==3){s="S";} //Spades

string v = "X";

if(*it/4==0){v="A";} //Ace

else if(*it/4==1){v="2";}

else if(*it/4==2){v="3";}

else if(*it/4==3){v="4";}

else if(*it/4==4){v="5";}

else if(*it/4==5){v="6";}

else if(*it/4==6){v="7";}

else if(*it/4==7){v="8";}

else if(*it/4==8){v="9";}

else if(*it/4==9){v="T";} //Ten

else if(*it/4==10){v="J";} //Jack

else if(*it/4==11){v="Q";} //Queen

else if(*it/4==12){v="K";} //King

st = st + v;

st = st + s;

st = st + " ";

}

return st;

}

bool Hand::getIsRummy(){

return isRummy(cardSet); //function pointer

}

//resets E without resetting hand associations; used in batch approximations

void Hand::reset(){

lockedIn = false;

E = (isRummy(cardSet)) ? 0.0 : 500.0;

}

37

7.2 Summary of Results for 3-Card Continuity Rummy

312 hands like A♣ A♦ 2♣ with E = 12.2500000000

312 hands like A♣ A♦ 3♣ with E = 14.2916666667

104 hands like A♣ 2♣ 4♣ with E = 15.0340909091

312 hands like A♣ 2♣ 4♦ with E = 15.1825757576

1768 hands like A♣ 2♣ 3♦ with E = 15.2289772727

624 hands like A♣ A♦ 3♥ with E = 15.4648516414

1560 hands like A♣ A♦ 5♣ with E = 15.4671717172

312 hands like A♣ A♦ 5♥ with E = 15.4672327718

312 hands like A♣ A♦ 4♣ with E = 15.4728488282

312 hands like A♣ A♦ 2♥ with E = 15.4728992646

52 hands like A♣ 3♣ 5♣ with E = 15.9763986014

312 hands like A♣ 2♦ 4♦ with E = 17.0074215715

312 hands like A♣ 3♣ 5♦ with E = 17.0732305628

312 hands like A♣ 3♣ 6♦ with E = 17.0737070109

520 hands like A♣ 3♣ 7♣ with E = 17.0751942232

312 hands like A♣ 3♣ 7♦ with E = 17.0752304967

104 hands like A♣ 3♣ 6♣ with E = 17.0953850796

156 hands like A♣ 2♦ 3♣ with E = 17.1010958053

312 hands like A♣ 2♦ 3♥ with E = 18.0920515788

624 hands like A♣ 2♦ 4♥ with E = 18.1338076896

312 hands like A♣ 2♦ 5♣ with E = 18.1394661776

624 hands like A♣ 2♦ 5♥ with E = 18.1401919365

624 hands like A♣ 2♦ 8♣ with E = 18.1437838885

312 hands like A♣ 2♦ 7♦ with E = 18.1437859037

624 hands like A♣ 2♦ 7♥ with E = 18.1438418627

312 hands like A♣ 2♦ 7♣ with E = 18.1438635222

624 hands like A♣ 2♦ 6♥ with E = 18.1440412502

312 hands like A♣ 2♦ 6♣ with E = 18.1443161989

312 hands like A♣ 2♦ 6♦ with E = 18.1445854036

312 hands like A♣ 3♦ 5♥ with E = 18.1487838203

312 hands like A♣ 3♦ 6♣ with E = 18.1540668969

624 hands like A♣ 3♦ 6♥ with E = 18.1540684957

312 hands like A♣ 4♦ 7♥ with E = 18.1558105415

156 hands like A♣ 4♦ 7♣ with E = 18.1559882568

312 hands like A♣ 3♦ 7♦ with E = 18.1579439075

312 hands like A♣ 3♦ 8♦ with E = 18.1583001130

38

624 hands like A♣ 3♦ 8♥ with E = 18.1583682569

624 hands like A♣ 3♦ 7♥ with E = 18.1583950372

312 hands like A♣ 3♦ 8♣ with E = 18.1584902829

312 hands like A♣ 3♦ 7♣ with E = 18.1587980145

312 hands like A♣ 4♦ 8♦ with E = 18.1605346891

312 hands like A♣ 4♦ 9♣ with E = 18.1607829051

624 hands like A♣ 4♦ 8♥ with E = 18.1608152911

312 hands like A♣ 4♦ 8♣ with E = 18.1608372793

312 hands like A♣ 4♦ 9♥ with E = 18.1608457260

52 hands like A♣ 5♣ 9♣ with E = 18.1651663447

156 hands like A♣ 5♦ 9♣ with E = 18.1653875144

312 hands like A♣ 5♣ 9♦ with E = 18.1654198678

312 hands like A♣ 5♦ 9♥ with E = 18.1654807138

156 hands like A♣ 3♦ 5♣ with E = 18.1757181485

312 hands like A♣ 2♦ 5♦ with E = 18.1836742219

312 hands like A♣ 2♦ 4♣ with E = 18.1838851671

312 hands like A♣ 3♦ 6♦ with E = 18.1979628021

312 hands like A♣ 4♣ 7♦ with E = 18.1987828975

52 hands like A♣ 4♣ 9♣ with E = 18.2034678729

104 hands like A♣ 4♣ 8♣ with E = 18.2036285598

312 hands like A♣ 4♣ 8♦ with E = 18.2044667946

156 hands like A♣ 4♣ 9♦ with E = 18.2044988437

52 hands like A♣ 4♣ 7♣ with E = 18.2442485400

7.3 Summary of Results for Approximations of 3-Card
Rummy with Aces Low

When the tolerance is set to 1.0 the results are as follows:
240 hands like 2♣ 2♦ 3♣ with E = 12.2500000000

216 hands like A♣ 3♣ 3♦ with E = 14.2916666667

3912 hands like A♣ A♦ 3♣ with E = 14.8750000000

564 hands like A♣ A♦ 2♣ with E = 15.7500000000

2116 hands like A♣ A♦ 2♥ with E = 17.0207896270

4192 hands like A♣ A♦ K♣ with E = 17.3911492987

8180 hands like A♣ 2♣ Q♣ with E = 18.2932809113

2488 hands like A♣ 2♦ 3♥ with E = 18.7476800197

96 hands like A♣ 2♦ K♣ with E = 19.3163153484

39

For comparison, these are the results when the tolerance is 0.5:
240 hands like 2♣ 2♦ 3♣ with E = 12.2500000000

216 hands like A♣ 3♣ 3♦ with E = 14.2916666667

1752 hands like A♣ A♦ 3♣ with E = 14.8750000000

2184 hands like A♣ A♦ 2♣ with E = 15.4731867284

420 hands like A♣ 3♣ 5♣ with E = 15.9763986014

120 hands like A♣ 2♦ 2♥ with E = 16.3252494553

1484 hands like A♣ A♦ 3♥ with E = 17.0145782073

672 hands like A♣ A♦ 2♥ with E = 17.2325884407

696 hands like A♣ 2♣ 4♦ with E = 17.6765799652

6972 hands like A♣ 2♣ 3♦ with E = 18.1432355981

6424 hands like A♣ 2♦ 3♥ with E = 18.4305322314

824 hands like A♣ 2♦ 5♦ with E = 18.8536850047

40

References

Bellman, Richard E. (1957). Dynamic Programming. Princeton, NJ: Prince-
ton University Press.

Gibson, Walter. (1974). Hoyles Modern Encyclopedia of Card Games. New
York: Doubleday.

Kotnik, Clifford, & Kalita, Jugal (2003). The significance of temporal-
difference learning in selfplay training td-rummy versus evo-rummy. In ICML
(pp. 369-375).

Parlett, David. (1978). The Penguin Book of Card Games. London: Penguin

Saeed, Ghahramani. (2005) Fundamentals of Probability with Stochastic
Processes. 3rd Edition. Upper Saddle River, NJ: Pearson Education.

41

