
A SIMULATION OF TRAFFIC FLOW ON HIGHWAYS

BY

JESSICA LEES

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

STETSON UNIVERSITY

2003

TABLE OF CONTENTS

LIST OF TABLES --- 3
LIST OF FIGURES--- 4
ABSTRACT -- 5
CHAPTERS
1. RELEVANT RESEARCH 6
2. INTRODUCTION OF THE PROBLEM

2.1. The Model --
2.1.1. Data --

 2.1.2. Assumptions --

11
11
11

3. STATISTICAL ANALYSIS OF TRAFFIC SPEED DATA
3.1. Mean and Standard Deviation --
3.2. Chi-Squared Test --

13
13

4. COMPUTER SIMULATION
4.1. Basic Multi-Lane Simulation --

4.1.1. Setting the Initial Conditions ---
4.1.2. Time Elapse ---

4.2. Improved Multi-Lane Simulation ---
4.2.1. Time Elapse ---

17
17
18
20
20

5. RESULTS
5.1. Running the Simulation ---
5.2. Linear Regression and R2 Statistic --
5.3. Results for Two Lanes --

5.3.1. Basic Model --
5.3.2. Improved Model ---

5.4. Results for Three Lanes ---
5.4.1. Basic Model --
5.4.2. Improved Model ---

22
22
25
25
26
27
27
28

6. STATISTICAL ANALYSIS OF RESULTS
6.1. Comparison of Passing Rules and No Passing Rules -------------------------------------

6.1.1. T-test ---
6.1.2. T-test for Two Lanes --
6.1.3. T-test for Three Lanes ---

6.2. Comparison of Two and Three Lanes --
6.2.1. Basic Model --
6.2.2. Improved Model ---

29
29
32
34
36
36
37

7. DISCUSSION OF THE MODEL AND CONCLUSIONS
7.1. Discussion of the Model --
7.2. Conclusions ---

38
39

APPENDIX A- CODE FOR BASIC MODEL (MATHEMATICA) ------------------------------ 41
APPENDIX B- CODE FOR IMPROVED MODEL (MATHEMATICA) ----------------------- 48
APPENDIX C- DATA FOR TRAFFIC SPEED --- 55
REFERENCES --- 56
BIOGRAPHICAL SKETCH -- 57

 2

LIST OF TABLES

TABLE

1. Table 1 Chi-Squared Data --
2. Table 2 Parameters for Speed Category --

15
18

 3

LIST OF FIGURES
FIGURE

1. Figure 1- Treiber and Helbing’s Results ---
2. Figure 2- Typical Traffic Speed vs. Density Curve ---
3. Figure 3- Basic Model, Two Lanes ---
4. Figure 4- Improved Model, Two Lanes --
5. Figure 5- Basic Model, Three Lanes --
6. Figure 6- Improved Model, Three Lanes ---
7. Figure 7- Basic and Improved Model for Two Lanes --
8. Figure 8- Basic and Improved Model for Three Lanes ---
9. Figure 9- Improved Model in Two and Three Lanes ---
10. Figure 10- Improved Model, Three Lanes ---

9
10
25
26
27
28
32
34
37
40

 4

ABSTRACT

A SIMULATION OF TRAFFIC FLOW ON HIGHWAYS
By

Jessica Lees

May 2003

Advisor: Erich Friedman
Department: Mathematics and Computer Science

We consider one-way traffic flow on highways and, using collected data, create a model. We are
unable to assume a normal distribution in the collected data, so we use a simulation to mimic the
behavior of traffic. We run multiple simulations of the model over various traffic densities to
determine how average traffic speed is related to traffic density. We find a linear relationship that
fits the data extremely well. We also consider changes in the passing rules of the simulation and
the addition of a third lane to analyze how these changes affect the results. We test whether there
is a statistical difference between the different models.

 5

CHAPTER 1

Relevant Research

Many models have been created to recreate traffic and learn more about it. Some models

consider the psychology of drivers to predict behavior; others look for comparisons between

traffic patterns and naturally-occurring phenomenon in order to make generalizations. Some

models approach traffic from a microscopic approach, to see how an individual car may change

traffic behavior, while others take a macroscopic perspective to see if patterns can be ascertained

by examining behavior among traffic as a whole.

One way that highway traffic has been modeled recently is by considering cars as molecules in a

gas that want to move in one direction with a constant velocity. The properties of gases can then

be related to traffic to help predict behavior. Boris Kerner, a physicist at Daimler-Benz Research

Institute, used this method to discover “synchronized traffic,” a phenomena between free-flowing

traffic and jams, where traffic moved slowly but steadily at the same speed in all three lanes. He

found this occurred mostly at on-ramps, where a high number of cars merging caused traffic to

completely synchronize and affected traffic flow for hours. [4]

Another model treats individual cars as cellular automatons. These cellular automatons then

follow certain rules that are assigned in the program, such as passing when the car in front is

moving too slowly. Some models also add “fudge factors” to allow for erratic behavior in order

to mimic traffic patterns more realistically. [4]

Two theoretical physicists, Bernardo Huberman, of Xerox Palo Alto Research Center and Dirk

Helbing, of the University of Stuttgart in Germany, used these two techniques to create a model

for highway traffic. They replicated Kerner’s results and found that synchronized traffic could

occur in other situations, such as a slow car passing a slower car. They also expanded on the

number of traffic phases, showing at least five distinct patterns that occur between free-flow and

jams. They also showed that traffic can easily and quickly switch phases. According to Helbing,

“At certain traffic densities, small causes have large effects. In particular, most types of

 6

congestion are [caused by] small disturbances that grow and at some point cause the traffic to

break down.” [4]

Huberman and Helbing also used cellular automatons to simulate how long it took a mix of cars

and trucks traveling at different speeds to cover a six mile stretch of highway. They found that 35

vehicles per mile of highway was a critical density where the traffic begins to synchronize and

travel as a block. They found this block to be very fragile and could easily turn into stop-and-go

traffic. Their solution to preventing this is to time on-ramp lights according to current traffic

conditions rather than set time schedules. They claim that by allowing the light for the on-ramp

to be green only when there are gaps in the highway traffic near that on-ramp, the block would be

preserved and traffic would stay in a synchronized state. [4]

Another useful simulation of highway traffic was created by Martin Treiber and Dirk Helbing,

both theoretical physicists at the University of Stuttgart in Germany. Treiber and Helbing

examined results from this simulation to see how free-flowing highway traffic dissolves into stop-

and-go patterns. They first identified three different states of traffic which can coexist on a single

road, behind an inhomogeneity, such as an accident, on-ramp, etc. These traffic states, going in

the upstream direction, are called:

¾ homogeneous congested traffic, where all lanes are approximately equally congested

and therefore synchronized;

¾ inhomogeneous congested traffic, involving a ‘pinch region’ in one lane; and

¾ stop-and-go traffic.

Treiber and Helbing report that, in contrast to other studies, the phenomenon of this traffic

behavior is caused by a region of very dense traffic that is stable in itself, but from which any

instabilities or “shock waves” travel in an upstream direction. [8]

The simulation uses the Intelligent Driver Model, or IDM. The IDM simulates traffic with the

idea that each car is an individual “molecule” of the larger traffic system. The parameters of the

IDM are:

 7

¾ desired velocity on a free road;

¾ desired safety time headway when following other vehicles;

¾ acceleration in everyday traffic;

¾ “comfortable” braking distance in everyday traffic;

¾ minimum bumper-to-bumper distance to the front vehicle;

¾ acceleration exponent. [9]

The IDM allows you to modify these parameters for the type of vehicle you want in the

simulation; aggressive drivers have a lower bumper-to-bumper distance, higher acceleration, and

lower safety time headway. The rate at which a vehicle is allowed to accelerate depends on the

above parameters, the speeds of the vehicle and the vehicle in front, and the gap between the

vehicles. [8]

For the simulation, Treiber and Helbing used a 20 km stretch of open freeway over a time interval

of 120 minutes, with initial conditions of 1670 vehicles per hour. They assumed identical values

in all parameters of the IDM for all cars in the simulation. In order to create an inhomogeneity,

they manipulated the IDM to model a section of the freeway where people are forced to slow

down and drive more carefully. This is created by increasing the desired safety time headway

and decreasing the desired velocity. [8]

Treiber and Helbing found that after 10 minutes of free-flowing traffic, traffic broke down at the

inhomogeneity, with homogeneous congested traffic occurring there. Smaller oscillations then

developed upstream from the inhomogeneity and traveled further upstream and grew into stop-

and-go waves. Then, the waves either dissipated or merged together, creating jams where traffic

was at a standstill. Once these jams formed, they remained intact and traveled upstream without

changing shape. Congested traffic at the inhomogeneity turned into free traffic downstream. [8]

Treiber and Helbing graphed the behavior of individual cars at six positions on the freeway: four

upstream of the inhomogeneity, one at the inhomogeneity, and one downstream of it. The most

interesting graphs are shown in Figure 1.

 8

In D5, at the inhomogeneity, we see a gradual decline in the movement of free traffic, until it

levels out to become homogeneous congested traffic. We can see that once cars enter this area,

they will be moving at a constant, slower velocity. In D4, 0.5 km upstream of the inhomogeneity,

we see the small oscillations that cause inhomogeneous congested traffic, where the traffic is still

moving, but it is not at a constant velocity. In D3, 2.0 km upstream of the inhomogeneity, we see

larger amplitudes of oscillation, where cars are slowing down more and getting closer to stop-

and-go traffic. In D1, 5.2 km upstream of the inhomogeneity, we see stop-and-go traffic in the

jams caused by the merging waves of congested traffic. [8]

Figure 1 – Treiber and Helbing’s Results

These graphs show interesting results, but since we will not be gathering results from individual

vehicles in our simulation, we cannot compare our results for the effects of traffic density to those

of a specific inhomogeneity.

These models will form a useful basis for our simulation. We will utilize cellular automatons to

assign rules to the behavior of vehicles in our program. We would like to find out if our model

has a critical traffic density, where the behavior and flow of traffic change dramatically. If this

does occur, we will compare our critical density to that found by Huberman and Helbing.

 9

We will also be graphing the results of our simulations to observe what the behavior looks like.

A typical equilibrium speed vs. density curve, calculated using partial differential equations, is

shown in Figure 2. The graph was created by Del Castillo and is presented by Rui in [7].

Figure 2 - Typical Traffic Speed vs. Density Curve

In this curve, ut is the free flow speed and km is the jam density. We are interested to see if our

model replicates these findings and if there are any similarities in the graphs.

There are also many models that are created to simulate traffic in cities for the purposes of easing

congestion during rush hours, planning the layout of streets, or deciding on the timing of

stoplights. While these models are interesting, they don’t provide relevant information on the

behavior of highway traffic, so we did not utilize these types of models for our research.

 10

CHAPTER 2

Introduction of the Problem

We would like the model to predict speeds of traffic, and return data about average speed which

we will statistically analyze to give us information about average traffic speed versus traffic

density.

2.1. The Model

The model will involve a computer simulation that will be used to provide information about

average speed and overall flow of traffic on highways. We will run the simulation using

changing amounts of traffic over a certain length of time to find the average traffic speed for each

traffic density.

2.1.1. Data

The data used to analyze traffic speeds was taken from Indiana highways from April to June 2002

by Purdue University as part of a joint transportation research program with the Indiana

Department of Transportation [1]. This data was used because it contained relevant information

about speed distribution on Indiana’s highways. The data from each quarter shows roughly the

same distribution so we can assume that the data is not influenced by weather, construction or

other factors. All data is initially in miles per hour, but we will convert to feet per second for

later ease of programming. The term highway is used throughout to refer to an interstate freeway,

and can be urban or rural.

2.1.2. Assumptions

The assumptions we will be using throughout the model are:

¾ Speed patterns found on Indiana highways can be generalized to all U.S. highways.

¾ Our simulation runs on a highway with a 55 mph posted speed limit.

 11

¾ Our simulation runs over a stretch of road that is 10 miles (or 52800 feet) long.

¾ All cars are the same length of 16 feet long.

¾ All traffic is traveling in one direction.

¾ The safe following distance between two cars is one car length. All vehicles are forced to

leave at least this much distance between themselves and other cars.

¾ A car’s position is measured at the front of the car.

¾ A car’s initial speed will also be referred to as the desired speed. Cars can slow down

from this speed when they are behind a slower car, but they never go faster than their

desired speed.

¾ We will run the simulation for a fixed time of 1300 seconds to ensure that the only

variables are number of lanes and traffic density, which will make it easier to identify

trends in the data.

 12

CHAPTER 3

Statistical Analysis of Traffic Speed Data

In order to better predict the speeds of traffic flow, we would like to fit a normal distribution to it

to see if it follows a predictable pattern. We must do a statistical analysis of the data we are given

to see if it is indeed normally distributed.

3.1. Mean and Standard Deviation

The mean speed, µ, on a highway with 55 mph posted speed limit, was 62.9 mph. In order to

simplify our calculation of standard deviation, we will assume that any vehicle that falls in a

speed range is traveling at the midpoint of that speed range, with the exception of the end

categories. Since these categories encompass more speeds, we use a speed of 35 mph for the

lowest category and 95 mph for the highest category. We compute the variance, σ2, using the

equation:

σ2 = ()1

)*(
1

−

−∑
=

n

xc
M

i
i µ

where c is the number of data points in the speed category, M is the number of speed categories, x

is the midpoint of the speed category, and n is the total number of data points. Our data has σ2 =

69.124 mph, so σ = 8.314 mph. We then convert these numbers to feet per second, giving us µ =

90.787 ft/sec. and σ = 12.197 ft/sec.

3.2. Chi-Squared Test

 13

We must then use the mean and standard deviation to do a chi-squared test on the data, in order to

tell us if the distribution of data points in each speed category is normal. First, we must calculate

the expected frequency for each category and then compare it to the observed frequency.

We calculate the expected frequency by finding the probability that, in a normal distribution, a

data point will lie in a certain speed category. This is done by computing a test-statistic Z, which

can then be looked up in a Z-table, or table of areas under a standard normal curve. The equation

for this statistic is:

Z =
()
σ
µ−x

For example, to compute P(40≤ x <45), we first rewrite this as P(-2.63≤ Z <-2.03). From a

normal probability table we find that the probability is .0169. Multiplying this probability by the

total number of cars gives an expected number of cars for this speed category. We repeat this

method for each speed category. The observed frequency is simply the number of cars observed

in that speed category, given by the data.

The data used in computing the chi-squared statistic is listed in Table 1.

 14

x-value Z-value Expected
Frequency

Observed
Frequency

x ≤ 40 Z ≤ -2.63 1421 7284

40 < x ≤ 45 -2.63 < Z ≤ -2.03 5587 4360

45 < x ≤ 50 -2.03 < Z ≤ -1.43 18248 8652

50 < x ≤ 55 -1.43 < Z ≤ -.83 41950 30663

55 < x ≤ 60 -.83 < Z ≤ -.23 67999 63045

60 < x ≤ 65 -.23 < Z ≤ .37 77784 89946

65 < x ≤ 70 .37 < Z ≤ .97 62710 74450

70 < x ≤ 75 .97 < Z ≤ 1.58 36000 37944

75 < x ≤ 80 1.58 < Z ≤ 2.18 14049 10105

80 < x ≤ 85 2.18 < Z ≤ 2.78 3934 2749

85 < x 2.78 < Z 893 1377

Table 1- Chi-Squared Data

The chi-squared statistic will tell us how closely these actual values are to the expected values in

a normal distribution. The equation for this statistic is:

χ2 = ()∑
=

−n

i i

ii

E
EO

1

where O is the observed value and E is the expected value. With this calculation, we got a value

of χ2 = 38834.93. We compare this to the test statistic, with 5% error, of 15.51, and, since our

 15

chi-squared statistic is well above this value, we conclude that the speeds on these highways are

not normally distributed.

This calculation tells us that our data cannot be predicted based on a normal curve, so we must

find a new method to predict speeds in our simulation. After experimenting with other curves to

fit the data, we chose to use the proportions given by the data as a guide for predicting the speeds

of all of the cars.

 16

CHAPTER 4

Computer Simulation

4.1. Basic Multi-Lane Simulation

Our first program simulates multiple lanes of one-way traffic. We used Mathematica to write and

run this program. The code for the basic program is listed in Appendix A. In the basic

simulation, passing rules are not followed. Vehicles are allowed to travel in any lane at any given

speed, and if a vehicle intends to pass a slower vehicle in front, it may use any lane that is

available. The data we will collect from each vehicle will be the total amount of time it took that

vehicle to move over 52800 feet. We do not collect data from the vehicles that are initially in the

simulation. Instead, we add vehicles according to a Poisson distribution and collect this

information once they reach the end of the highway interval. Vehicles that reach the end of the

highway are deleted from the simulation.

4.1.1. Setting the Initial Conditions

We begin by setting the initial parameters of the simulation: number of vehicles, number of lanes,

and number of seconds. We then set parameters for each vehicle in the simulation.

We randomize the position of each of the initial vehicles and then check to make sure that two

vehicles don’t overlap on a 16 foot interval of highway. The vehicles are then sorted in

descending position for each lane. They are sorted using Mathematica’s automatic sorting

feature.

We determine a car’s desired velocity using proportions identified by research from the Indiana

Department of Transportation and Purdue University. [1] We obtain a random number for each

vehicle and assign it a speed according to the parameters shown in Table 2. The actual speed

value is calculated by standardizing the random number over the given speed interval. For the

 17

end speed intervals, we set a lower and upper speed limit. In the lowest interval, the lower limit

is 30 mph. In the highest interval, the upper limit is 100 mph.

Speed Category Parameter for Random
Number, r

40 mph and below 0 ≤ r < .022

41 to 45 mph .022 ≤ r < .035

46 to 50 mph .035 ≤ r < .061

51 to 55 mph .061 ≤ r < .154

56 to 60 mph .154 ≤ r < .345

61 to 65 mph .345 ≤ r < .617

66 to 70 mph .617 ≤ r < .842

71 to 75 mph .842 ≤ r < .957

76 to 80 mph .957 ≤ r < .988

81 to 85 mph .988 ≤ r < .996

86 mph and above .996 ≤ r < 1

Table 2- Parameters for Speed Category

4.1.2. Time Elapse

Once the vehicles have been ordered, we can begin to move them by lane. The vehicles move in

one-second increments according to their speed. We move vehicles in descending order from the

furthest position, beginning in the right-most lane. If a car’s desired velocity moves it to a

 18

position that still allows for a 16 foot space behind the vehicle in front of it, it is allowed to move

at its desired velocity. If not, the program checks each adjacent lane to see if there is a gap that

would accommodate the car and 16 feet of following distance. Since there are no passing rules,

the program checks both right and left lanes, if they exist. If there is a gap, the car is moved to

the new lane. If no gap exists, the car is forced to change its speed in order to remain 16 feet

behind the car ahead.

New vehicles are added to the simulation by means of a Poisson distribution. The probability that

x cars get added during a given second is:

P(x) =
!x

e xλλ−
,

where λ is the average traffic density per second, which can be calculated by:

3600
1*9.61*

10 hour
miles

miles
C

=λ ,

where C is the initial number of cars and 61.9 miles/hour is the average speed for 55 mph

highways. The positions of new cars are also randomized and checked for duplicates.

When a vehicle reaches 52800 feet or greater in position, the program checks to see whether the

car was part of the original traffic density or was added during the running of the simulation. If

the vehicle was in the simulation before the time elapse began, we will not include its data in the

final analysis, and we simply delete its parameters from the simulation. We neglect these cars

because they entered the stretch of road before the simulation began, and we cannot generalize

about their behavior over that part of the road. Instead, they will create the desired amount of

traffic for the vehicles whose behavior we are going to analyze.

If the vehicle was added at some time during the simulation, the program calculates and saves the

time difference between its initial position, somewhere in the first 100 ft., and its new position,

 19

somewhere greater than 52800 ft., and saves it as an average speed. It also saves the desired

velocity for that vehicle. These two numbers will be used later to determine what proportion of

its desired velocity at which the vehicle was able to travel. The other parameters for the vehicle

are deleted from the simulation.

4.2. Improved Multi-Lane Simulation

This program was also written using Mathematica and the code can be found in Appendix B.

This simulation also uses multiple lanes of one-way traffic. Again, passing is allowed, but

vehicles are now forced to follow highway driving and passing rules. The rules used in this

program are:

¾ All vehicles must drive in the right-most lane, if the space is available;

¾ If a vehicle intends to pass a slower-moving vehicle, it can only pass in the adjacent left

lane, if there is space in that lane.

As in the basic simulation, the data we will collect from each vehicle will be the total amount of

time it took that vehicle to move over 52800 feet. The program uses the same method to set

initial conditions and add new cars, but uses different logic to move each car.

4.2.1. Time Elapse

Since the rule is that all vehicles must be in the rightmost lane if there is space available, we must

begin by trying to move any vehicle that is not in the rightmost lane to its adjacent right lane. We

also want to move the vehicle to the forward position according to its speed, so we will check the

right lane to see if it has enough space for the vehicle to move forward. If the space is available,

the car is moved to that position; if not, we will check directly in front of the car to see if there is

room for it to move forward in its own lane. If there is room, it is moved to that position; if not,

the program checks the adjacent left lane for the necessary space. If there is no space in the left

 20

lane, the car is forced to stay in its own lane and reduce its speed so it stays one car length behind

the slower car in front. This method is continued for every vehicle in the simulation.

When a vehicle reaches 52800 feet, the program follows the same procedure in the basic model

for saving its average and desired speed.

 21

CHAPTER 5

Results

5.1. Running the Simulation

We ran simulations over highways with two and three lanes, in each program. Simulations began

at 100 vehicles, were increased by 25 vehicles per lane, and reached a total number of cars of at

least 1000 vehicles. We obtained the average traffic speed and the proportion of average speed

over desired speed for every run of the simulation. We will look at this proportion subtracted

from one, which we will call the slow down, because it gives us information about how much

traffic as a whole had to slow down from its desired speed due to congestion.

5.2. Linear Regression and R2 Statistic

Statistics that will be useful for analyzing our data are a line of regression and the R2 statistic.

The line of regression fits the data with a line, so an approximate slope can be calculated. The R2

statistic is related to this line because it tells us how well this line fits our data.

In order to calculate a line of regression, we minimize the square of the distance from each point

to the line of regression. We use the equation,

()∑
=

−=
n

i
ii xfyD

1

2)(,

where yi is the observed value and f(xi) is the value on the line of regression. We can square this

equation to get rid of the square root, and do a substitution for,

() ii mxxf = ,

since the equation for linear regression is of this form. In order to minimize the distance, we take

the derivative with respect to m, the unknown constant, and set it equal to zero. This becomes,

() () .0*2
1

=−−= ∑
=

i

n

i
ii xmxy

dm
dD

 22

We then solve for m, which produces the equation,

.

1

2

1

∑

∑

=

== n

i
i

n

i
ii

x

yx
m

Once we have obtained this line of regression, we can calculate how closely our data points

follow this line, which is called the R2 statistic. To calculate R-squared, we must first calculate

the sum of the squares of error, or SSE. This gives us the residual between the y values of the

observed points and the y values of the predicted points. The SSE is given by the equation,

() ,ˆ
2

1
∑
=

−=
n

i
ii yySSE

where is the y-value of the predicted points. ŷ

Next we find the sum of squares of total, or SST. This statistic tells us how far away the observed

y values fall from the mean of the predicted y-values. The SST is given by,

()
2

1
∑
=

−=
n

i
i yySST ,

where y is the mean of the observed y-values.

When we divide the SSE by the SST, we get a proportion of how much the residuals make up the

total discrepancy between the predicted and observed values. If we subtract this proportion from

one, we get the R2 statistic, or,

.12

SST
SSER −=

 This tells us that if the proportion SSE/SST is low, meaning the residuals between the predicted

and observed y-values were smaller than the residuals between the observed data and its mean,

 23

we get a higher R2. If R2 is closer to one, we know the line of regression fits the data well, and as

R2 gets closer to zero, the line of best fit is less accurate. If R2 is not very good, we know that the

data is not fit well by a line, and we would try some other regression to get a higher R2.

 24

5.3. Results for Two Lanes

5.3.1. Basic Model

For two lanes without passing rules, we plotted the proportion that traffic was slowed down,

versus the traffic density. The data points resemble a linear function so we fitted them with such

a function. We chose a linear function with a y-intercept at the origin because a traffic density

that is very small or zero, should have a zero slow down proportion. This also gives us a

common point for the graphs for each model, which will be useful in later statistical analysis. We

also converted traffic density to cars per mile for easier comparison between two and three lanes.

The data is plotted in Figure 3 with its linear regression.

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

Expected

Observed

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

Figure

We calculated a line of regression for

line is positive, we know the relations

traffic density, there was a proportion
Traffic Densityensity (cars/mil
Traffic D e)
 3- Basic Model, Two Lanes

 this data which was y = .00253x . Since the slope of this

hip is positive, which tells us that for every increase in

al increase in slow down.

 25

We found an R2 of .9801, meaning the data has a strong linear relationship and is approximated

well by this linear function. This result tells us that in two lanes without passing rules, the slow

down experienced by traffic has a strong linear relationship with the traffic density.

5.3.2. Improved Model

For two lanes with passing rules, we again plotted the proportion that the traffic was slowed

down, versus the traffic density. The data points seemed to exhibit a linear relationship so we

fitted the points with a linear function. We again used a linear function with a y-intercept at the

origin. The plotted data and the linear regression are shown in Figure 4.

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Expected

Observed

1-
(A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

The line of regression for th

the positive relationship be

We calculated an R2 of .948

So, in two lanes, with passi

they would like to.
Traffic Density (cars/mile)

Figure 4- Improved Model, Two Lanes

is data was y = .00194x. The slope is positive, which again tells us of

tween traffic slow down and traffic density.

2, which tells us the line of regression fits the data pretty strongly.

ng rules, higher traffic density means vehicles must travel slower than

 26

5.4. Results for Three Lanes

5.4.1. Basic Model

We analyzed the results from simulations in three lanes with no passing rules in the same way as

in two lanes. We plotted the slow down versus traffic density and found a line of regression that

passed through the origin. This is shown in Figure 5.

25 50 75 100 125 150 175

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Expected

Observed

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

The line of regression was y

three lanes without passing ru

For this data, the R2 statistic i

increased traffic density caus
Traffic Density (cars/mile)
Figure 5- Basic Model, Three Lanes

= .00123x, again showing an obviously positive relationship for

les.

s .9668 so the linear relationship is strong. Once again, we see that

es an increased slow down proportion.

 27

5.4.2. Improved Model

The data from three lanes with passing rules is shown below with the line of best fit. It also

appears to have a linear relationship, which we will again verify with a calculation of R2. The

graph is shown in Figure 6.

20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Expected

Observed

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

 Traffic Density (cars/mile)

Figure 6- Improved Model, Three Lanes

The linear regression produced a line with the equation y = .00157x, so the positive relationship

is still present in three lanes with passing rules.

The R2 statistic is .9833 so this data fits the line of regression very accurately.

In all models for two and three lanes, the data exhibited a strong, positive linear relationship, so

we can generalize these results. Using this simulation, we found that the slow down of traffic

increases proportionally for every increase in traffic density. Now we would like to examine the

effects of adding passing rules.

 28

CHAPTER 6

Statistical Analysis of Results

6.1. Comparison of Passing Rules and No Passing Rules

One of the reasons for creating a model that uses passing rules and one that does not, was the

purpose of comparing how these rules might affect the slow down of traffic at the same density.

In order to see if these rules have an effect, or if any difference is due to chance, we must test if

the difference between the two functions is statistically significant.

6.1.1. T-test

Since we are using a small sample, we will be using a t-test to look for statistical significance.

The functions we are testing are the linear functions we obtained from the linear regression and

are of the form:

xy β= ,

where y is the slow down proportion, x is the traffic density, and β is the slope of the line of best

fit. We want to see whether the slopes of the two functions are statistically significant. In order

to use the t-test on each slope, we must normalize each slope to some . Once we find , we

will calculate its mean and variance. To calculate , we want to minimize the distance from the

data points to the line of regression. The equation for the distance from the data points to the line

is given by:

β̂ β̂

β̂

()∑
=

−=
n

i
iii xyL

1

2
β̂ .

The derivative of this equation is:

 29

()ii

n

i
i xyx

d
dL β
β

ˆ2ˆ 1

−−= ∑
=

.

Setting this equal to zero and solving for , we get: β̂

∑
∑= 2

ˆ
i

ii

x
xy

β . (1)

The mean, or expected value, for the slope, is in fact, just the slope itself, β. The variance of

is the variance of equation (4).

β̂

() 









=

∑
∑

2
ˆ

i

ii

x
xy

VV β .

We can simplify this down to,

()
()

()yVx
x

V i

i

∑
∑

= 2
22

1β̂ .

We know the variance of y is the mean of the distance from the observed value of y to the

function, which is given by,

()
()
()1

ˆ
1

2

−

−
=
∑
=

n

xy
yV

n

i
ii β

,

where yi is the observed value, xβ̂ i is the expected value given by the function, and n is the total

number of data points. After cancellation and substitution, we obtain a final equation for variance

of , β̂

 30

()
()

() 







−

−
=

∑

∑

=

=
n

i
i

n

i
ii

xn

xy
V

1

2

1

2

1

ˆ
ˆ

β
β . (2)

Since we now know both the mean and variance for each slope β, we can use the t-test to see if

the difference between the slopes is statistically significant. We are testing against the null

hypothesis, that the two slopes are equal, or Ho: β1 = β2. We will obtain a test statistic and

compare it to a given value for statistical significance. The formula for this test-statistic, t, is:

() ()



















+

−−−
=

∑∑
==

−

n

i
i

n

i
i

n

x

yV

x

yV

t

1

2
2

2

1

2
1

1

2121
22

)()(

ˆˆ ββββ
, (3)

where V(y) is given by equation (8) and, due to the null hypothesis, β1-β2 = 0. If this t-value is

larger than the critical value given by the table, then we know the difference between the two

slopes is statistically significant and the passing rules do have an effect on how much vehicles

must slow down in a certain traffic density.

 31

6.1.2. T-test for Two Lanes

To begin our analysis of how the addition passing rules affected traffic slow down, we graph the

observed data from the basic and improved model, which is shown in Figure 7.

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

No Passing Rules

Passing Rules

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

Fi

From the graph, it appear

down than simulations w

rules helped traffic flow b

to see if our intuition is c

significant.

We know that in equation

model by using a linear r

find . In the basic mo

.000194. We then used e

basic model,

β̂

()Bβ̂V = .0
Traffic Density (cars/mile)
gure 7- Basic and Improved Model for Two Lanes

s that simulations with passing rules experienced a greater traffic slow

ith no passing rules at the same traffic density. This implies that passing

etter by allowing vehicles to go closer to their desired speed. In order

orrect, we must use the t-test to see if the difference is statistically

 (1), β is the value of the slope of the line of best fit we found for each

egression. Next, we use equation (1) with the data from each model to

del, we calculated = .000249; in the improved model, we found =

quation (2) to find the variance for each model’s data points. In the

Bβ̂ Iβ̂

00363; in the improved model ()Iβ̂V = .000576. We then used

 32

equation (3) with these four values to find a t-statistic of 5.5625. At a 95% significance level, the

critical t-value for 40 degrees of freedom is 1.684. Since our t-statistic is above this level, our

data is statistically significant, so we know that passing rules had a significant effect on traffic

speed. We can conclude that in the case of two lanes, using passing rules cut down on traffic

slow down significantly compared to not using passing rules at the same traffic density.

 33

6.1.3. T-test for Three Lanes

We are also interested in the effect of implementing passing rules to traffic in three lanes. The

graph of the basic and improved models in three lanes is shown below.

20 40 60 80 100 120 140

0.1

0.2

0.3

0.4

0.5

No Passing Rules

Passing Rules

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

Figur

This graph shows us that, in

graph, we see that simulatio

down proportion than simu

slowed down traffic in thre

statistically significant.

We find = .000123, Bβ̂ Iβ̂

statistic of 5.92317, which,

This result tells us that, thre

simulations with passing ru
Traffic Density (cars/mile)
e 8- Basic and Improved Model for Three Lanes

 the case of three lanes, the situation seems to be reversed. From this

ns that were run with passing rules, tended to have a higher slow

lations run without passing rules. This implies that passing rules

e lanes. We will use the t-test to see if this is implication is

= .000157, ()Bβ̂V = .000418, and ()Iβ̂V = .000243. We find a t-

 at a 95% confidence level, is significant.

e lanes, there was a statistically significant difference between

les and simulations without passing rules. However, unlike the two

 34

lane case, the result of adding passing rules was that traffic was slowed down more, instead of

less. Possible reasons for this unusual result are discussed in the next chapter.

 35

6.2. Comparison of Two and Three Lanes

We would also like to examine the effects of adding a third lane for the same traffic density in

both the basic and improved models. We will use the same t-test to compare the slopes of each

line of regression.

6.2.1. Basic Model

The data from the basic model in two lanes and three lanes is graphed in Figure 9.

20 40 60 80 100 120

0.1

0.2

0.3

0.4

0.5

Three Lanes

Two Lanes

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

This graph shows that tra

lanes, when no passing ru

significant.

We find = .00253,2β̂ 3β̂

find a t-statistic of 18.600

significance. Thus, addin

speed of traffic, when no
 Traffic Density (cars/mile)
Figure 9- Basic Model in Two and Three Lanes

ffic in two lanes experienced a greater slow down than traffic in three

les were used. We used the t-test to see if this result is statistically

= .00114, ()2β̂V = .00038, and ()3β̂V = .00036. Using these values, we

3. This result is highly significant for 43 degrees of freedom at 95%

g a third lane had a very significant impact on increasing the overall

 passing rules were used.

 36

6.2.2. Improved Model

We did the same comparison for the model that incorporates passing rules. The graph of two and

three lanes for this model is shown in Figure 10.

20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Three Lanes

Two Lanes

1-
 (A

ve
ra

ge
 S

pe
ed

/ D
es

ire
d

Sp
ee

d)

Figu

In the improved model, the

higher traffic densities, the

these were significant.

We obtained = .00194, 2β̂

values, we found a t-statisti

significance level. Accordi

on traffic with passing rule
 Traffic Density (cars/mile)
re 9- Improved Model in Two and Three Lanes

 data points for two and three lanes are much closer, although for

third lane still appears to decrease the slow down. We tested to see if

= .00156, 3β̂ ()2β̂V = .00058, and ()3β̂V = .00025. Using these

c of 3.9752 which is significant for 43 degrees of freedom at the 95%

ng to these statistics, adding a third lane also had a significant effect

s and allowed traffic to travel at a higher speed.

 37

CHAPTER 7

Discussion of the Model and Conclusions

7.1. Discussion of the Model

Our model was created to simulate a real-life phenomenon of how traffic moves on highways.

The goal of this model was to recreate this behavior, and find a function that modeled it best. We

were able to simulate how traffic moved along a highway and we found that it was fit very well

by a linear regression. Since all of our R2 statistics were very close to one, we know that the data

we produced was modeled very well by a linear function.

Also, we were able to show that passing rules do have a significant effect on how well traffic

flows. Based on our simulations, these passing rules were helpful in allowing two lanes of traffic

to travel at higher speeds for higher densities. Unfortunately, these passing rules also

significantly hurt three lanes of traffic, which is a weakness that will be discussed later.

We were also able to use our model to show the significance of adding a third lane of traffic.

Adding this third lane significantly helped lower the slow down that the vehicles experienced,

whether or not passing rules were implemented.

However, we built assumptions into the model in order to make simulation easier. These

assumptions may have caused certain weaknesses in how true the model is to real life.

One of the weaknesses of our model was the use of passing rules. Our data for three lanes

showed that passing rules slowed down the flow of traffic. We viewed an animation of a

simulation that used passing rules in three lanes and found that traffic tended to be concentrated

in the two right lanes, with few vehicles utilizing the left-most lane. This is due to our rule that

traffic move to the right-most lane as much as possible. This causes an increased density in two

lanes, which interferes with the ability of cars to pass each other and forces traffic to slow down.

One possible solution to this problem would be to amend the passing rules for three or more lanes

 38

so that vehicles tend to travel more in the center lanes, which would allow the left lanes to be

used more for passing and would help to spread out the traffic, rather than concentrating it.

Another weakness was the assumption that all cars are exactly the same length. In real-life it is

obvious that this assumption is false. Since our model deals with passing, this assumption affects

the amount of time it takes for one vehicle to pass another. Passing a shorter vehicle would take

less time than passing a longer vehicle, so changing this assumption could possibly have an effect

on the slow down of traffic. One possible solution would be setting vehicle length as a parameter

for each car. The length of a vehicle could be assigned using some appropriate distribution. This

length would then have an impact on whether or not a vehicle was allowed to change lanes.

7.2. Conclusions

Based on this model, we were able to conclude that the traffic slow down proportion and traffic

density have a positive, linear relationship. We also found that passing rules have a significant

effect on the traffic slow down proportion, although this effect is not clear for all situations. We

are also able to find that adding a third lane has a significant effect on improving traffic flow. We

can speculate that this result is true for higher numbers of lanes, but more simulations are

required to test this theory.

In order to compare our results to those obtained by partial differential equations, we graph our

data in terms of traffic speed versus traffic density and compare it to the distribution found by Del

Castillo in [7]. This type of graph for the improved model over three lanes is shown in figure 9.

 39

 50 100 150

20

40

60

80

100

Tr
af

fic
 S

pe
ed

 (k
m

/s
)

Figure 10

This graph shows that our data follow

relationship found by Del Castillo. H

traffic speed was close to zero. This

non-linear relationship.

Also, our data does not show a critica

The critical density in Huberman and

where traffic became very fragile and

density at this point, so our model do

Further runs of the simulation may ha

Even though our model does not repl

gives interesting results of a linear rel
 Traffic Density (cars/mile)
- Improved Model, Three Lanes

s a linear relationship instead of the curved, nonlinear

owever, we have not reached a traffic density where the

means that more runs of the simulation may produce a more

l density that causes the traffic speed to decrease sharply.

 Helbing’s model was 35 vehicles per mile of highway,

 unstable. Our simulation does not produce a critical

es not replicate the results of Huberman and Helbing.

ve produced a different critical density for our model.

icate the results of Del Castillo or Huberman and Helbing, it

ationship between average traffic speed and traffic density.

 40

APPENDIX A.

Code for Basic Model (Mathematica)

//Creating and initializing variables

numcars = 100;

numlanes = 2;

maxtime = 1300;

nplace = Table[52800*Random[], {i, 1, numcars}];

lane = Table[Random[Integer, {1, numlanes}], {i, 1, numcars}];

speed = Table[a = Random[];

Which[a < .022, 44 + (2000/3)*a,

 a < .035, (176/3) + (22/3)*a,

a < .061, 66 + (22/3)*a,

a < .154, (220/3) + (22/3)*a,

a < .345, (242/3) + (22/3)*a,

a < .617, 88 + (22/3)*a,

a < .842, (286/3) + (22/3)*a,

a < .957, (308/3) + (22/3)*a,

a < .988, 110 + (22/3)*a,

a < .996, (352/3) + (22/3)*a,

a < 1, (374/3) + 22*a], {i, 1, numcars}];

timein[k_] := Table[0, {Length[lanes[k]]}];

timeout[k_] := Table[0, {Length[lanes[k]]}];

avgspeed := {};

newlane := {};

carsadded = 0;

carsleft = 0;

savedvelocity := {};

newpos := {};

//Sorting the vehicles

lanes[i_] := nplace[[Flatten[Position[lane, i]]]];

order[k_] := Reverse[Sort[lanes[k]]];

initialorder[k_] := Reverse[Sort[lanes[k]]];

velocity[k_] := Reverse[Sort[lanes[k]]];

numbers[k_] := Length[lanes[k]];

 41

//Assigning velocities to respective vehicles

For[L = 1, L ≤ numlanes, L++,

 For[c = 1, c ≤ Length[lanes[L]], c++,

 For[k = 1, k ≤ numcars, k++,

 If[order[L][[c]] == nplace[[k]],

 velocity[L] = ReplacePart[velocity[L], speed[[k]], c]]]]];

//Checking for duplicate positions

For[L = 1, L ≤ numlanes, L++,

 For[c = 1, c ≤ numbers[L], c++,

 While[Select[order[L], (order[L][[c]] - 32) < # < (order[L][[c]]) &] != {},

 x = 52800*Random[];

 order[L] = ReplacePart[order[L], x, c];

 initialorder[L] = ReplacePart[initialorder[L], x, c];

 w = Transpose[Reverse[Sort[Transpose[{order[L], velocity[L],

 initialorder[L]}]]]];

 order[L] = w[[1]];

 velocity[L] = w[[2]];

 initialorder[L] = w[[3]]]]];

//Moving the vehicles

For[t = 0, t ≤ maxtime, t++,

 For[L = 1, L ≤ numlanes, L++,

 For[c = 1, c ≤ numbers[L], c++,

 If[c == 1,

 If[(velocity[L][[c]] + order[L][[c]]) ≤ 52800,

 order[L] = ReplacePart[

 order[L], (order[L][[c]] + velocity[L][[c]]), c],

//Saving a vehicle’s statistics

 If[(timein[L][[c]]) > 0,

 timeout[L] = ReplacePart[timeout[L], t, c];

 AppendTo[savedvelocity, velocity[L][[c]]];

 AppendTo[avgspeed, ((order[L][[c]] + velocity[L][[c]] –

initialorder[L][[c]])/(timeout[L][[c]] - timein[L][[c]]))]];

 carsleft = carsleft + 1;

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 42

 initialorder[L] = Drop[initialorder[L], {c}];

 order[L] = Drop[order[L], {c}];

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 c = c - 1],

 If[(velocity[L][[c]] + order[L][[c]]) ≤ (order[L][[c - 1]] - 32),

//Moving a vehicle forward to its desired position in its own lane

 order[L] = ReplacePart[order[L], (velocity[L][[

 c]] + order[L][[c]]), c],

//Checking the adjacent lane, if vehicle is unable to move to desired position

 If[L == 1,

//In lane 1, checking the adjacent lane

 If[Select[order[L + 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L + 1], timein[L][[c]]];

 AppendTo[timeout[L + 1], timeout[L][[c]]];

 AppendTo[order[L + 1], order[L][[c]]];

 AppendTo[initialorder[L + 1], initialorder[L][[c]]];

 AppendTo[velocity[L + 1], velocity[L][[c]]];

 numbers[L + 1] = numbers[L + 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 y = Transpose[Reverse[Sort[Transpose[{order[L + 1], velocity[L + 1], timein[L + 1],

initialorder[L + 1], timeout[L + 1]}]]]];

 order[L + 1] = y[[1]];

 velocity[L + 1] = y[[2]];

 timein[L + 1] = y[[3]];

 initialorder[L + 1] = y[[4]];

 timeout[L + 1] = y[[5]];

 c = c - 1,

 order[L] = ReplacePart[order[L], (order[L][[c - 1]] - 32), c]],

 If[L == numlanes,

 43

//In the leftmost lane, checking the adjacent lane

 If[Select[order[L - 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L - 1], timein[L][[c]]];

 AppendTo[timeout[L - 1], timeout[L][[c]]];

 AppendTo[order[L - 1], (order[L][[c]] + velocity[L][[c]])];

 AppendTo[initialorder[L - 1], initialorder[L][[c]]];

 AppendTo[velocity[L - 1], velocity[L][[c]]];

 numbers[L - 1] = numbers[L - 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 w = Transpose[Reverse[Sort[Transpose[{order[L - 1], velocity[L - 1], timein[L - 1],

initialorder[L - 1], timeout[L - 1]}]]]];

 order[L - 1] = w[[1]];

 velocity[L - 1] = w[[2]];

 timein[L - 1] = w[[3]];

 initialorder[L - 1] = w[[4]];

 timeout[L - 1] = w[[5]];

 c = c - 1,

 order[L] = ReplacePart[order[L], (

 order[L][[c - 1]] - 32), c]],

//In any middle lane, checking left adjacent lane

 If[Select[order[L + 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L + 1], timein[L][[c]]];

 AppendTo[timeout[L + 1], timeout[L][[c]]];

 AppendTo[order[L + 1], order[L][[c]]];

 AppendTo[initialorder[L + 1], initialorder[L][[c]]];

 AppendTo[velocity[L + 1], velocity[L][[c]]];

 numbers[L + 1] = numbers[L + 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 44

 initialorder[L] = Drop[initialorder[L], {c}];

 velocity[L] = Drop[velocity[L], {c}];

 numbers[L] = numbers[L] - 1;

 u = Transpose[Reverse[Sort[Transpose[{order[L + 1], velocity[L + 1], timein[L + 1],

initialorder[L + 1], timeout[L + 1]}]]]];

 order[L + 1] = u[[1]];

 velocity[L + 1] = u[[2]];

 timein[L + 1] = u[[3]];

 initialorder[L + 1] = u[[4]];

 timeout[L + 1] = u[[5]];

 c = c - 1,

//In any middle lane, checking right adjacent lane

 If[Select[order[L - 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L - 1], timein[L][[c]]];

 AppendTo[timeout[L - 1], timeout[L][[c]]];

 AppendTo[order[L - 1], (order[L][[c]] + velocity[L][[c]])];

 AppendTo[initialorder[L - 1], initialorder[L][[c]]];

 AppendTo[velocity[L - 1], velocity[L][[c]]];

 numbers[L - 1] = numbers[L - 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 velocity[L] = Drop[velocity[L], {c}];

 numbers[L] = numbers[L] - 1;

 z = Transpose[Reverse[Sort[Transpose[{order[L -1], velocity[L - 1], timein[L - 1],

initialorder[L - 1], timeout[L - 1]}]]]];

 order[L - 1] = z[[1]];

 velocity[L - 1] = z[[2]];

 timein[L - 1] = z[[3]];

 initialorder[L - 1] = z[[4]];

 timeout[L - 1] = z[[5]];

 c = c - 1,

//If no space is available in other lanes, moving vehicle to new position behind slower vehicle

 order[L] = ReplacePart[order[L], (order[L][[c - 1]] - 32),

 c]]]]]]]]];

 45

//Adding new cars

 lambda = (numcars/10)*(61.9)*(1/3600);

 r = Random[];

 newcars = 0;

 newlane = {};

 newpos = {};

 While[r > (Sum[(E^(-lambda)*lambda^j)/(j!), {j, 0, newcars}]), newcars++];

 carsadded = carsadded + newcars;

//Checking for duplicate positions

 If[newcars ≠ 0,

 For[k = 1, k ≤ newcars, k++,

 AppendTo[newlane, Random[Integer, {1, numlanes}]];

 AppendTo[newpos, 100*Random[]];

 While[Select[order[newlane[[k]]], (newpos[[k]] -

 32) < # < (newpos[[k]]) &] ≠ {},

 newlane = ReplacePart[newlane, Random[Integer, {1, 2}], k];

 newpos = ReplacePart[newpos, 120*Random[], k]];

 AppendTo[order[newlane[[k]]], newpos[[k]]];

 AppendTo[initialorder[newlane[[k]]], newpos[[k]]];

 AppendTo[timein[newlane[[k]]], t];

 AppendTo[timeout[newlane[[k]]], 0];

 AppendTo[velocity[newlane[[k]]], a = Random[];

 Which[a < .022, 44 + (2000/3)*a,

a < .035, (176/3) + (22/3)*a,

a < .061, 66 + (22/3)*a,

a < .154, (220/3) + (22/3)*a,

a < .345, (242/3) + (22/3)*a,

a < .617, 88 + (22/3)*a,

a < .842, (286/3) + (22/3)*a,

a < .957, (308/3) + (22/3)*a,

a < .988, 110 + (22/3)*a,

a < .996, (352/3) + (22/3)*a,

a < 1, (374/3) + 22*a]];

//Sorting new cars into respective lanes

x = Transpose[Reverse[Sort[Transpose[{order[newlane[[k]]], velocity[newlane[[k]]],
initialorder[newlane[[k]]], timein[newlane[[k]]], timeout[newlane[[k]]]}]]]];

order[newlane[[k]]] = x[[1]];

 46

 velocity[newlane[[k]]] = x[[2]];

 initialorder[newlane[[k]]] = x[[3]];

 timein[newlane[[k]]] = x[[4]];

 timeout[newlane[[k]]] = x[[5]];

 numbers[newlane[[k]]] = numbers[newlane[[k]]] + 1]]]

 47

APPENDIX B.

Code for Improved Model (Mathematica)

//Creating and initializing variables
numcars = 100;

numlanes=2;

maxtime=1300;

nplace=Table[52800*Random[],{i,1,numcars}];

lane=Table[Random[Integer,{1,numlanes}],{i,1,numcars}];

speed=Table[a=Random[];

Which[a<.022, 44+(2000/3)*a,

a<.035, (176/3)+(22/3)*a,

a<.061, 66+(22/3)*a,

a<.154, (220/3)+(22/3)*a,

a<.345, (242/3)+(22/3)*a,

a<.617, 88+(22/3)*a,

a<.842, (286/3)+(22/3)*a,

a<.957, (308/3)+(22/3)*a,

a<.988, 110+(22/3)*a,

a<.996, (352/3)+(22/3)*a,

 a<1, (374/3)+22*a],{i,1,numcars}];

timein[k_]:=Table[0,{Length[lanes[k]]}]

timeout[k_]:=Table[0,{Length[lanes[k]]}]

avgspeed:={}

newlane:={}

carsadded=0;

carsleft=0;

savedvelocity:={}

newpos:={}

//Sorting vehicles

lanes[i_]:=nplace[[Flatten[Position[lane,i]]]]

order[k_]:=Reverse[Sort[lanes[k]]]

initialorder[k_]:=Reverse[Sort[lanes[k]]]

velocity[k_]:=Reverse[Sort[lanes[k]]]

numbers[k_]:=Length[lanes[k]]

 48

//Assigning velocities to respective vehicles

For[L=1, L ≤ numlanes, L++,

 For[c=1, c ≤ Length[lanes[L]], c++,

 For[k=1, k ≤ numcars, k++,

 If[order[L][[c]]==nplace[[k]],

 velocity[L]=ReplacePart[velocity[L],speed[[k]],c]]]]]

//Checking for duplicate positions

For[L=1, L ≤ numlanes, L++,

 For[c=1, c ≤ numbers[L], c++,

 While[Select[order[L], (order[L][[c]]-32)<#<(order[L][[c]])&]!={},

 x=52800*Random[];

 order[L]=ReplacePart[order[L], x, c];

 initialorder[L]=ReplacePart[initialorder[L], x, c];

 w=Transpose[Reverse[Sort[Transpose[{order[L],velocity[L],initialorder[L]}]]]];

 order[L]=w[[1]];

 velocity[L]=w[[2]];

 initialorder[L]=w[[3]]]]]

//Moving the vehicles

For[t = 0, t ≤ maxtime, t++,

 For[L = 1, L ≤ numlanes, L++,

 For[c = 1, c ≤ numbers[L], c++,

 If[c == 1,

 If[(velocity[L][[c]] + order[L][[c]]) ≤ 52800,

 If[L == 1,

order[L] = ReplacePart[order[L], (order[L][[c]] + velocity[L][[c]]), c],

 If[Select[order[L - 1], (order[L][[c]] + velocity[L][[c]] - 32) < # < (order[L][[c]]

+ velocity[L][[c]]) &] == {},

 AppendTo[timein[L - 1], timein[L][[c]]];

 AppendTo[timeout[L - 1], timeout[L][[c]]];

 AppendTo[order[L - 1], (order[L][[c]] + velocity[L][[c]])];

 AppendTo[initialorder[L - 1], initialorder[L][[c]]];

 AppendTo[velocity[L - 1], velocity[L][[c]]];

 numbers[L - 1] = numbers[L - 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 49

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 w = Transpose[Reverse[Sort[Transpose[{order[L - 1], velocity[L - 1], timein[L - 1],

initialorder[L - 1], timeout[L - 1]}]]]];

 order[L - 1] = w[[1]];

 velocity[L - 1] = w[[2]];

 timein[L - 1] = w[[3]];

 initialorder[L - 1] = w[[4]];

 timeout[L - 1] = w[[5]];

 c = c - 1,

 order[L] = ReplacePart[order[L], (order[L][[c]] + velocity[L][[c]]), c]]],

//Saving a vehicle’s statistics

 If[(timein[L][[c]]) > 0,

 timeout[L] = ReplacePart[timeout[L], t, c];

 AppendTo[savedvelocity, velocity[L][[c]]];

 AppendTo[avgspeed, ((order[L][[c]] + velocity[L][[c]] -

 initialorder[L][[c]])/(timeout[L][[c]] - timein[L][[c]]))]];

 carsleft = carsleft + 1;

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 order[L] = Drop[order[L], {c}];

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 c = c - 1],

 If[L == 1,

//In the rightmost lane, moving a vehicle to its desired position

 If[(velocity[L][[c]] + order[L][[c]]) ≤ (order[L][[c - 1]] - 32),

 order[L] = ReplacePart[order[L], (velocity[L][[c]] + order[L][[c]]), c],

//In the rightmost lane, checking the left adjacent lane

 If[Select[order[L + 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L + 1], timein[L][[c]]];

 AppendTo[timeout[L + 1], timeout[L][[c]]];

 AppendTo[order[L + 1], order[L][[c]]];

 50

 AppendTo[initialorder[L + 1], initialorder[L][[c]]];

 AppendTo[velocity[L + 1], velocity[L][[c]]];

 numbers[L + 1] = numbers[L + 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 y = Transpose[Reverse[Sort[Transpose[{order[L + 1], velocity[L + 1], timein[L + 1],

initialorder[L + 1],timeout[L + 1]}]]]];

 order[L + 1] = y[[1]];

 velocity[L + 1] = y[[2]];

 timein[L + 1] = y[[3]];

 initialorder[L + 1] = y[[4]];

 timeout[L + 1] = y[[5]];

 c = c - 1,

//In the rightmost lane, moving to a position behind the slower vehicle

 order[L] = ReplacePart[order[L], (order[L][[c - 1]] - 32), c]]],

 If[L == numlanes,

//In the leftmost lane, attempting to move to the right adjacent lane

 If[Select[order[L - 1], (order[L][[c]] + velocity[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L - 1], timein[L][[c]]];

 AppendTo[timeout[L - 1], timeout[L][[c]]];

 AppendTo[order[L - 1], (order[L][[c]] + velocity[L][[c]])];

 AppendTo[initialorder[L - 1], initialorder[L][[c]]];

 AppendTo[velocity[L - 1], velocity[L][[c]]];

 numbers[L - 1] = numbers[L - 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 numbers[L] = numbers[L] - 1;

 velocity[L] = Drop[velocity[L], {c}];

 w = Transpose[Reverse[Sort[Transpose[{order[L - 1], velocity[L - 1], timein[L - 1],

initialorder[L - 1], timeout[L - 1]}]]]];

 51

 order[L - 1] = w[[1]];

 velocity[L - 1] = w[[2]];

 timein[L - 1] = w[[3]];

 initialorder[L - 1] = w[[4]];

 timeout[L - 1] = w[[5]];

 c = c - 1,

//In the leftmost lane, moving to the desired position

 If[(order[L][[c]] + velocity[L][[c]]) ≤ (order[L][[c - 1]] - 32),

 order[L] = ReplacePart[order[L], (order[L][[c]] + velocity[L][[c]]), c],

//In the leftmost lane, moving to a position behind the slower vehicle

 order[L] = ReplacePart[order[L], (order[L][[c - 1]] - 32), c]]],

//In any middle lane, attempting to move to the right lane

 If[Select[order[L - 1], (order[L][[c]] + velocity[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L - 1], timein[L][[c]]];

 AppendTo[timeout[L - 1], timeout[L][[c]]];

 AppendTo[order[L - 1], (order[L][[c]] + velocity[L][[c]])];

 AppendTo[initialorder[L - 1], initialorder[L][[c]]];

 AppendTo[velocity[L - 1], velocity[L][[c]]];

 numbers[L - 1] = numbers[L - 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 velocity[L] = Drop[velocity[L], {c}];

 numbers[L] = numbers[L] - 1;

 z = Transpose[Reverse[Sort[Transpose[{order[L - 1], velocity[L - 1], timein[L - 1],

initialorder[L - 1], timeout[L - 1]}]]]];

 order[L - 1] = z[[1]];

 velocity[L - 1] = z[[2]];

 timein[L - 1] = z[[3]];

 initialorder[L - 1] = z[[4]];

 timeout[L - 1] = z[[5]];

 c = c - 1,

//In any middle lane, moving to the desired position

 If[(order[L][[c]] + velocity[L][[c]]) ≤ (order[L][[c - 1]] - 32),

 order[L] = ReplacePart[order[L], (order[L][[c]] + velocity[L][[c]]), c],

 52

//In any middle lane, checking the left adjacent lane

 If[Select[order[L + 1], (order[L][[c]] - 32) < # < (order[L][[c]] +

velocity[L][[c]]) &] == {},

 AppendTo[timein[L + 1], timein[L][[c]]];

 AppendTo[timeout[L + 1], timeout[L][[c]]];

 AppendTo[order[L + 1], order[L][[c]]];

 AppendTo[initialorder[L + 1], initialorder[L][[c]]];

 AppendTo[velocity[L + 1], velocity[L][[c]]];

 numbers[L + 1] = numbers[L + 1] + 1;

 timein[L] = Drop[timein[L], {c}];

 timeout[L] = Drop[timeout[L], {c}];

 order[L] = Drop[order[L], {c}];

 initialorder[L] = Drop[initialorder[L], {c}];

 velocity[L] = Drop[velocity[L], {c}];

 numbers[L] = numbers[L] - 1;

 u = Transpose[Reverse[Sort[Transpose[{order[L + 1], velocity[L + 1],

timein[L + 1], initialorder[L + 1], timeout[L + 1]}]]]];

 order[L + 1] = u[[1]];

 velocity[L + 1] = u[[2]];

 timein[L + 1] = u[[3]];

 initialorder[L + 1] = u[[4]];

 timeout[L + 1] = u[[5]];

 c = c - 1,

//In any middle lane, moving to a position behind the slower vehicle

 order[L] = ReplacePart[order[L], (order[L][[c - 1]] - 32), c]]]]]]]]];

//Adding new cars

 lambda = (numcars/10)*(61.9)*(1/3600);

 r = Random[];

 newcars = 0;

 newlane = {};

 newpos = {};

 While[r > (Sum[(E^(-lambda)*lambda^j)/(j!), {j, 0, newcars}]), newcars++];

 carsadded = carsadded + newcars;

 If[newcars ≠ 0,

//Checking for duplicate positions

 For[k = 1, k ≤ newcars, k++,

 AppendTo[newlane, Random[Integer, {1, numlanes}]];

 53

 AppendTo[newpos, 100*Random[]];

 While[Select[order[newlane[[k]]], (newpos[[k]] - 32) < # < (newpos[[k]]) &] ≠ {},

 newlane = ReplacePart[newlane, Random[Integer, {1, 2}], k];

 newpos = ReplacePart[newpos, 120*Random[], k]];

 AppendTo[order[newlane[[k]]], newpos[[k]]];

 AppendTo[initialorder[newlane[[k]]], newpos[[k]]];

 AppendTo[timein[newlane[[k]]], t];

 AppendTo[timeout[newlane[[k]]], 0];

 AppendTo[velocity[newlane[[k]]], a = Random[];

Which[a < .022, 44 + (2000/3)*a,

a < .035, (176/3) + (22/3)*a,

a < .061, 66 + (22/3)*a,

a < .154, (220/3) + (22/3)*a,

a < .345, (242/3) + (22/3)*a,

a < .617, 88 + (22/3)*a,

a < .842, (286/3) + (22/3)*a,

a < .957, (308/3) + (22/3)*a,

a < .988, 110 + (22/3)*a,

a < .996, (352/3) + (22/3)*a,

a < 1, (374/3) + 22*a]];

//Sorting the new cars into respective lanes

 x = Transpose[Reverse[Sort[Transpose[{order[newlane[[k]]],velocity[newlane[[k]]],

initialorder[newlane[[k]]], timein[newlane[[k]]], timeout[newlane[[k]]]}]]]];

 order[newlane[[k]]] = x[[1]];

 velocity[newlane[[k]]] = x[[2]];

 initialorder[newlane[[k]]] = x[[3]];

 timein[newlane[[k]]] = x[[4]];

 timeout[newlane[[k]]] = x[[5]];

 numbers[newlane[[k]]] = (numbers[newlane[[k]]] + 1)]]]

 54

APPENDIX C

Data for Traffic Speed

Recorded Speeds Freeways posted at 55 mph

Urban Interstate
Freeways posted at 65 mph

Rural Interstate
40 mph and below 7284 798

41 to 45 mph 4360 286

46 to 50 mph 8652 1054

51 to 55 mph 30663 6813

56 to 60 mph 63045 22506

61 to 65 mph 89946 50199

66 to 70 mph 74450 79003

71 to 75 mph 37944 59945

76 to 80 mph 10105 21729

81 to 85 mph 2749 5122

86 mph and above 1377 1398

Total 330,575 248,853

 55

REFERENCES

[1] D.L. Cochran, Speed Monitoring on Indiana Highways- April thru Jun, 2002. Indiana
Department of Transportation and Purdue University, West LaFayette, IN, 2002.
http://bridge.ecn.purdue.edu/~speed/Reports/2002sum2.pdf .

[2] S. Ghahramani, Fundamentals of Probability, Second Edition. Prentice Hall, Upper Saddle
River, NJ, 2000.

[3] R.V. Hogg and E.A. Tanis, Probability and Statistical Inference, Fifth Edition. Prentice Hall,
Upper Saddle River, NJ, 1997.

[4] R. Kunzig, “Curing Congestion.” Discover, 20(3), pp31-32, 1999.

[5] H. Pulapaka, Personal Communication. September 25, 2002.

[6] J. Rasp, Personal Communication. April 1, 2003.

[7] J. Rui, W. Qingsong, and Z. Zuojin, “A New Dynamics Model for Traffic Flow.” Chinese
Science Bulletin, 46(4), pp.345-350, 2001.

[8] M. Treiber and D. Helbing, Explanation of observed features of self-organization in traffic
flow 2002.. http://xxx.uni-augsburg.de/PS_cache/cond-mat/pdf/9901/9901239.pdf . February 2,
2003.

[9] M. Treiber, Traffic Model used for the Simulation. 1999.
http://vwisb7.vkw.tu-dresden.de/~treiber/MicroApplet1_0/IDM.html . February 3, 2003.

 56

http://bridge.ecn.purdue.edu/~speed/Reports/2002sum2.pdf

BIOGRAPHICAL SKETCH

 Jessica Lees is a senior who is looking forward to graduation. Her activities at Stetson

include involvement in Student Ambassadors, Alpha Kappa Psi, and the study abroad program.

Jessica plans to move to Nottingham, England after graduation, but she is undecided about a

career. She enjoys traveling, trying new foods, and watching movies.

 57

