

EXPLORING TIC-TAC-TOE VARIANTS

By

Alec Levine

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS

AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

STETSON UNIVERSITY

2018

2

 2

ACKNOWLEDGMENTS

This senior research project would not have been possible without the guidance of Dr.

Friedman. I would also like to thank each of the Math professors I have had during my time at

Stetson University: Dr. Vogel, Dr. Edwards, Dr. Friedman, Dr. Coulter, and Dr. Miles. Without

your classes, my understanding of both game theory and math in general would not be as strong

as it is today. Lastly, thank you to all my friends of family who played hundreds of games of Tic-

Tac-Toe with me.

3

 3

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. 2

LIST OF FIGURES ... 4

ABSTRACT --- 5

CHAPTERS

1. AN INTRODUCTION TO GAME THEORY

1.1. P-Positions and N-Positions ... 6

1.2. Game Tree .. 7

1.3. First Player Advantage ... 8

2. TIC-TAC-TOE

2.1. The Original Game ... 9

2.2. Additional Square .. 11

2.3. 5x5 Game Board ... 12

2.4. Larger than 5x5 Game Board .. 13

2.5. 4x4 Game Board ... 15

3. 3D TIC-TAC-TOE

3.1. Adding the Third Dimension .. 18

3.2. Otrio .. 19

4. TECHNOLOGY

4.1. MATLAB .. 21

4.2. Misère ... 22

4.3. Veto Tic-Tac-Toe .. 24

4.4. Notakto .. 26

5. SUMMARY OF RESULTS .. 30

6. FUTURE WORK ... 34

APPENDIX .. 36

REFERENCES ... 44

4

 4

LIST OF FIGURES

FIGURES

1. Subtraction Game Game Tree .. 7

2. Tic-Tac-Toe Game Tree .. 9

3. Tic-Tac-Toe Game Tree Branch .. 10

4. Extra Side ... 11

5. Extra Corner Side ... 11

6. Extra Corner ... 12

7. 5x5 Pairing ... 12

8. 6x6 Pairing ... 15

9. 7x7 Pairing ... 15

10. First Two Moves .. 15

11. Blank Squares .. 16

12. Blank Square Pairing Grid ... 16

13. 4x4 Pairing Grids ... 17

14. Notakto End Positions.. 26

15. Notakto Knight Board .. 27

16. Notakto Setup... 29

5

 5

ABSTRACT

EXPLORING TIC-TAC-TOE VARIANTS

By

Alec Levine

May 2018

Advisors: Dr. Friedman

Department: Mathematics and Computer Science

Tic-Tac-Toe is an ancient game that has been solved so many times that the optimal

moves are common knowledge, and the game always ends in a draw. However, when the rules to

the game are changed, even slightly, the winning strategy becomes completely different.

This senior research is focused on variations of Tic-Tac-Toe and the effects they have on

the winning strategies. The first variations we solved were Tic-Tac-Toe boards of varying sizes.

This included the original 3x3 game board, the original game board with additional squares added

in different places, and every square board larger than the size of 3x3. The other Variations that

we look into are 3x3x3 Tic-Tac-Toe; Otrio, where players can choose between three different

sizes for their markers; Veto Tic-Tac-Toe, where each player can “veto” one move each turn; the

Misère version of Tic-Tac-Toe, where the last player to make a move loses; and Notakto, where

each player plays only X’s and the last player to make a move loses.

6

 6

CHAPTER 1: An Introduction to Game Theory

1.1. P-Positions and N-Positions

This senior research is on Tic-Tac-Toe variations and how to find the winning strategies

for each of them. Before we can look at actual games, though, we must first look at some

important aspects of game theory. Game theory is a branch of mathematics that has existed for

many years and has been used to solve the winning strategies for many different games, such as

Tic-Tac-Toe, Nim, and even obscure “games” such as the Prisoner’s Dilemma. Game theory has

even branched out to scenarios that most people would not consider a “game.” Mathematicians

have numerous ways of determining the winning strategies in these “games.”

One classification of games that is very important is “combinatorial games.” These

games have multiple characteristics, such as they cannot end in a draw and each player alternates

taking turns. One way of deciding who will win a combinatorial game is by creating a game tree

and labeling it with “P-positions” and “N-positions.” P-positions and N-positions are categories

for each “position” in a game. A P-position is a position where the previous person has a winning

strategy, while an N-position is a position where the next person has a winning strategy. A huge

result of this categorizing of positions is that any time a player can move to a P-position, the

current position is an N-position. Consequently, this means that any time a player cannot move to

a P-position, they are currently at a P-position (Friedman). Using these two statements, we can

create a game tree for a game to find the winner. However, in Tic-Tac-Toe, a game that ends in a

draw is not only possible, but it is common. Normally, this means that we cannot use P-positions

and N-positions when discussing Tic-Tac-Toe, but in Section 1.3, we discover why we can use a

similar labelling of positions to create a game tree to determine who wins.

7

 7

1.2. Game Trees

A game tree is a mapping of all the possible outcomes of a

game, where the beginning game position branches into all the

possible positions that the first move can create, and it continues

until no more moves can be made. Figure 1-1 is a diagram of a

game tree for a game called “The Subtraction Game”. In this version

of the game, there is a pile of beans, and each player takes turns

removing either two or three beans from the pile. So, if the pile starts

with six beans, the next player’s option is to take away two beans,

leaving four in the pile, or three beans, leaving three in the pile. This

can be seen in the game tree, because the position representing six

beans has two arrows protruding from it, one going to the four, and

one going to the three, depicting the two options the player has. The

P-positions have been shaded, while the N-positions are unshaded.

In order to determine which positions are P and which are N without

the diagram, we would start with all of the end positions of the

game. The end positions are any positions where the next player has

no possible moves. Since every end position cannot move to a P-position, they must be P-

positions. That means the end positions for this game, zero beans and one bean, are P-positions.

Then, we look at each pile of beans that can lead to a pile of zero beans and one bean and label

them as N-positions. We continue to use the two statements explained in Section 1.1 to create the

entire game tree for this Subtraction game. We can use this diagram to determine that when the

game starts in a P-position, the second player will win, and when the game starts on an N-

8

 8

position, the first player will win. So, if there is a pile of 8 beans, we can see that the first player

will win this game.

1.3. First Player Advantage

Before we look at a game of Tic-Tac-Toe, we must also learn about the first player

advantage. In many games, the first player has an inherent advantage, and some of this can be

explained by the “strategy stealing argument.” The strategy stealing argument is used for games

like Tic-Tac-Toe, where both players have the same options, and each move does not put that

player at an inherent disadvantage. If we assume that the second player has a winning strategy,

the first player can take that winning strategy after making a move that does not put him at a

disadvantage and does not prevent him from taking the strategy. Thus, if the second player has a

way to win in a game like Tic-Tac-Toe, the first player can steal the win (József). Since the

second player technically has no way of winning, we can consider the second player forcing a

draw as the second player “winning” the game. This changes how we create the game tree.

Instead of labeling each position as N and P, we can label them as “F” and “S”, where F means

the first player can win and S means the second player can draw. This causes some major

differences in the game tree, which can be seen in the next chapter.

9

 9

CHAPTER 2: Tic-Tac-Toe

2.1. The Original Game

 Now that we understand the basics behind game theory, we can look at a regular game of

3x3 Tic-Tac-Toe. Since the second player

cannot win, we will focus on whether or

not the second player can prevent the first

player from winning. Thus, a draw is

viewed as a second player win for the

purposes of an original game of Tic-Tac-

Toe. One way to figure out who wins a

game of regular Tic-Tac-Toe is by creating a game tree, however there are hundreds of thousands

of possible outcomes for the game. Figure 2-1 shows a game tree for Tic-Tac-Toe that only

contains the first few positions, and the number of branches we would create with each new move

grows exponentially. To make the game tree much more manageable, we can put a restriction on

how each player chooses his next move.

We can restrict each player to prefer placing their X or O in a winning spot, over any

other spot. We can also force each player to prefer blocking an opponent’s winning move if that

player does not have a winning move. The last thing we can do to limit the game tree is by

ignoring every position that is symmetrically equivalent to another position. Now, instead of

there being nine original moves that the first person can make, there are three: a corner space, an

edge space, and the middle space. Figure 2-2 shows one branch of this game tree, with each

position labelled in the top right corner as either an S or F position. As we can see, the branch

ends in an S because the second player creates a draw in this scenario. With P and N positions,

the label depends on what each position can move to, as discussed in Chapter 1, but when we use

F and S, determining which label to use becomes more complicated. We can define an F-position

10

 10

as any position where the first player

has won, the first player can move to an

F-position, or the second player can

only move to F-positions. Likewise, an

S-position is any position where the

second player has forced a draw, the

second player can move to an S-

position, or the first player can only

move to S-positions. So, we can label

the bottom of the branch as an S-

position, because the first player did not

win the game. We can use these new

definitions to determine that this branch

leads to a second player draw. The

entire game tree ends with ninety-five

branches that a game of Tic-Tac-Toe

can take, where eighty-three of those

paths end in a draw, ten of them result

in the first player winning, and two

paths end in the second player winning.

Using this game tree, we discover that

if the first player places an “X” in the

middle square, the optimal move for the

second player is to place an “O” in a

corner square. Similarly, if the first

11

 11

player takes either a corner or edge piece as his first move, the second player should take the

middle square. This ensures that the second player will have a way of forcing a draw.

2.2. Additional Square

Before we add more rules to the game, we should first look

at what happens when we change the board. The first thing we can

look at is what happens when a square is added to the board. This

simplifies the game a lot. If we look at a board with an extra square

next to an edge square, there is a clear strategy for the first player to

win. If he places an X as seen in Figure 2-3, the second player is forced to place an O in the

middle row. If the second player does not place an O in the middle row, the first player can place

an X directly to the right of his first move and now threatens a win with two separate moves.

Since the second player can only prevent one of these moves, the first player will win. However,

if the second player decides to place an O in the middle row, it is either in an edge square or the

new square. Since both players can no longer use the new square to get three makers in a row, we

can relate this game to a normal 3x3 board and look at our game tree again. If the second player

takes an edge square, the game tree shows that the first player will win. If the second player took

the new square, it is as if the second player never placed an O during his first turn on a 3x3 board,

which is strictly worse than taking an edge square, so the first player will still win. Thus the first

player has a definitive winning strategy on this board.

There are two other places where we can add an extra

square. Figure 2-4 shows a board with an extra square

adjacent to a corner square. As we can see in the figure, the

first player’s best first move is in the square in the first row

and third column. Similarly to the board with an extra square

12

 12

next to an edge piece, the second player’s options are very limited. In order to avoid the same

situation as Figure 2-3, the second player is forced to move in the corner. The first player can

then follow the moves in the figure to ensure a win.

A square can also be added diagonally adjacent to a corner, as seen in Figure 2-5. This

square creates the least variation from an original game of Tic-

Tac-Toe. No matter where the first player places his first X, the

second player can place his O in a square that blocks off the

corner piece, thus turning the board into a regular 3x3 board.

Thus, the second player can force a draw.

2.3. 5x5 Game Board

 Instead of adding single squares, we can now look at how the game changes when we add

entire rows and columns to the game. For example, we can figure out who will win a Tic-Tac-

Toe board with five rows and five columns, where each

player’s goal is to make a line using five of his markers

instead of three. We can see that, since there are five rows,

five columns, and two diagonals, there are twelve different

ways to get five markers in a row. A game tree becomes

even more impractical. Instead of creating a game tree, we

can try to create a strategy the second player can enjoy that

will always prevent the first player from winning. One strategy we can use is a pairing strategy,

where each position has a paired position, and if the first player takes one of these positions, the

second player will take its pair. Figure 2-6 shows one possible pairing strategy the second player

can use. The reason this works is because every row, column, and diagonal has a complete pair of

positions. That means that since there are twelve ways to get five in a row, we need twelve pairs,

13

 13

or twenty-four squares, to create the pairing strategy. Since a five by five grid has twenty-five

squares, we have one extra space that does not need a pair, which is why the middle square in the

diagram is blank. We can create an equation to determine if a grid has enough spaces to use a

pairing strategy. For any board of size s by s, there are s2 squares available. The number of pairs

we need is s+s+2, because we need one pair for each of the s rows, each of the s columns, and

the two diagonals. Since we need two squares for each pair, we can create the following

inequality to determine if the board has enough squares for a pairing strategy.

Since this equation holds true for any integer greater than four, the second player has enough

empty squares for a pairing strategy for all square boards of size 5 by 5 or greater.

2.4. Larger than 5x5 Board

 Although there are enough spaces to create a pairing strategy for boards of size 6 by 6

and greater, this does not necessarily mean that we can use a pairing strategy. Proving that there

is at least one existing pairing strategy for these boards requires a more rigorous proof. To prove

this, we must first create labels for different aspects of a Tic-Tac-Toe board. First, let us define

each square individually. Let a square be represented by a pair of coordinates (x, y), where “x” is

the row of the square, and “y” is the column of the square. Thus, the square in the 3rd row and 4th

column of a grid can be represented by the coordinate (3, 4). Next, let us create a symbol for

representing each pair in the pairing strategy. Let (a, b) and (c, d) be the two squares used in a

pairing strategy. We can represent this by writing a “&” between them, such that (a, b) & (c, d) is

a pair. Let “s” be used to represent the number of rows and columns in a board of size s by s.

Since there are s rows and columns, we can represent these as Rn and Cn, where “n” is the

specified row or column number. There are also two diagonals, so we can define D1 as the

descending diagonal from left to right, and D2 as the ascending diagonal from left to right. Now,

14

 14

we can create the equations.

So, for an 8x8 board, the diagonal pairs would be (4, 4)&(5, 5) and (4, 5)&(5, 4) using these

equations. Since each of these squares is unique for boards of size 6 by 6 or greater, these

equations can be used to create a pairing strategy for these boards. Figures 2-7 and 2-8 show the

pairing strategies for a 6x6 and 7x7 board using these equations. Similarly to the 5x5 pairing

strategy, these grids also have empty squares. However, the number of squares differs. We can

actually calculate this by using equation (1). The difference between the left side and right side of

15

 15

the equation calculates the number of empty squares that should appear on the grid. So, for a 6x6

grid, since the difference between thirty-six and twenty-eight is eight, there should be eight empty

squares on the grid, which can be seen in the figure.

2.5. 4x4 Game Board

 Now we need to look at the square board of size four and

discover a new way to figure out who wins this game. Since the

board requires ten pairs for the pairing strategy, but there are only

sixteen squares, the second player cannot simply use a pairing

strategy, however we can force the second player to make specific

choices during his first two moves, as seen in Figure 2-9. The

reason this set of moves is important is because no matter what the

first player’s first two moves are, the second player can always move to some rotation of this

figure. Now there are only five options for four markers in a row, and fourteen empty spaces (the

sixteen original spaces minus the two O’s). Now the pairing strategy is viable, but there is a huge

problem. We have no way to predict the first player’s first three moves. In order to create a

16

 16

successful pairing strategy, we must create a different pairing strategy for each possible

combination of squares the first player decides to take. This is where the unused spaces become

important. Since we need to make five pairs, and there are fourteen

empty spaces, we can look at the options for the four unused squares

to create grids. Figure 2-10 shows one such grid, where the unused

squares are marked “B” for “Blank”. We can then construct a

pairing grid with these four blank squares, as seen in Figure 2-11.

Of course, whether or not we can use this grid depends on the first

player’s first three moves, since after our second “O”, the first player will make a total of three

moves. Any grid using the blank square setup can only be used when the first player has taken at

least two of the blank squares as his first three moves. Now, we must create a grid, using this

blank square strategy, for every possible first three moves that the first player can make.

Similarly to our game tree for the 3x3 board, we can use symmetry

to erase most of the possibilities. Instead we can split up his choices

into four categories: the first three moves can either contain two or

more edges, the two remaining middle squares, two or more corners,

or a corner, a middle square, and an edge square. The following

page shows the pairing strategies for each category. Note that the

last pairing strategy shown is the same as the “2 Middle” grid. Thus,

the second player can create a draw in a 4x4 game of Tic-Tac-Toe if that player follows the nine

grids seen in Figure 2-12.

17

 17

18

 18

CHAPTER 3: 3D Tic-Tac-Toe

3.1. Adding the Third Dimension

The next step after adding rows and columns, is adding dimensions. This means we can

look at a board that is 3x3x3. The rules of the game are very similar to regular Tic-Tac-Toe. Each

player takes turns placing an X or O in an empty square, and the first player to get three X’s or

O’s in a row, column or diagonal wins, but now the player can also get three in a row through the

third dimension, either in a vertical column or a diagonal line through the three layers. For

simplicity, we will separate the 3x3x3 board into three separate boards, labelling each layer from

one to three, with the middle layer as layer two. Just like in 3x3 Tic-Tac-Toe, the best move for

the first player is in the middle square of the board, which would be the middle square of layer

two. This is because the middle square gives the first player thirteen ways to get three in a row,

while a corner square, a middle square, and an edge square in layer one or three give five, five,

and four ways to win respectively. The edge and corner squares of layer two only give three and

four ways to win respectively.

After the first player plays in the middle square, the second player’s moves can be put

into three different categories: the second player will either play in the middle of another layer, in

an edge or corner of another layer, or in an edge or corner in layer two. Without loss of

generality, we can assume that if the second player chooses to start on either layer one or layer

three, he will start on layer one. If the second player responds in the middle of layer one, the first

player should respond by playing in layer one. This threatens a diagonal through the layers, so the

second player must be respond in the opposite square of layer three to stop the first player from

winning. Now, the first player should place his X adjacent to the X he placed on layer one. Now,

the first player threatens two ways to win, and the second player can only stop one of these, so

the first player wins. The second player also has the option to play in an edge or corner of layer

19

 19

one instead. If he does, the first player should respond in the middle of that layer. This threatens a

vertical column through the middle of the layers, so the second player has to respond in the

middle square of layer three. Now, if the first player places an X in any empty square on layer

one, he threatens two ways of winning, and has won the game. The last possible first move for

the second player is in layer two. If that happens, the first player should use the same strategy as

the previous case, by taking the middle square of layer one and then an edge or corner square in

layer one to win. So, the game of 3x3x3 Tic-Tac-Toe is a first player win.

3.2. Otrio

 In 2015, Brady Peterson designed the game Otrio, which was marketed as “Next Level

Tic-Tac-Toe.” In this game, each player has nine circles, with three large, three medium, and

three small circles. These circles are colored to differentiate which player used which circle. The

board is similar to a Tic-Tac-Toe board, however once a circle has been placed in a square, the

other two sizes of circles are still able to be placed in that square. The winner of Otrio is the first

player to get three circles of the same size in a row, column, or diagonal; all three sizes of circles

in one square; or one of each sized circle in a row, column, or diagonal in either ascending or

descending order. This game can be played with two to four players, but we will only look at the

strategy for two players.

 This game is very similar to 3D Tic-Tac-Toe, if we view each circle size as one of the

“layers” in 3D Tic-Tac-Toe. This means the only difference between Otrio and 3D Tic-Tac-Toe

fundamentally is that each player is limited to three circles of each size, which in 3D Tic-Tac-Toe

would be equivalent to saying each player can only place three markers in each layer. Since our

strategy for 3D Tic-Tac-Toe never required the first player to place three markers in a single

layer, the same strategy can be applied to Otrio for a first player win. We just need to adjust the

strategy so it handles circle sizes instead of layers. So, the first player should start with the

20

 20

medium size circle in the middle square. Similar to 3D Tic-Tac-Toe, we can assume that the

second player if the second player chooses either the small or large circle, he will choose to use

the small circle. If the second player places a small circle in an edge or corner, the first player

should respond with the small circle in the middle square. Now, the first player has a medium and

small circle in the middle square, so the second player must place a large circle in the middle

square. The first player can place another small circle in any empty edge or corner square and

threaten two ways of winning. Alternatively, the second player’s first move could be a small

circle in the middle square. Then, the first player should respond with a small circle in any edge

or corner square. The second player must place a large circle opposite this small circle to stop the

first player from winning. The first player should place a small circle adjacent to his previous

small circle to threaten to ways of winning. The last option the second player has for his first

move is to place a medium size square in an edge or corner. The first player should place a small

circle in that same square. The second player must place a large circle opposite this small circle.

Now, the first player can threaten two ways of winning by placing a small circle in the same

square that the second player just played in. So, just like 3D Tic-Tac-Toe, Otrio is a first player

win.

21

 21

CHAPTER 4: Technology

4.1. MATLAB

Now that we have looked at varying sizes for Tic-Tac-Toe boards and how they impact

the winner of the game, we can start changing the rules of Tic-Tac-Toe. However, changing the

rules of the game makes finding the winning strategy much more difficult to do without a

computer. One of the big reasons for this is that the best first move is not apparent. In regular Tic-

Tac-Toe, the middle squares are always the best squares because they create the most

opportunities for getting three markers in a row, but when the rules of the game starts changing,

this is not necessarily the best first move. Another important feature of normal Tic-Tac-Toe is

that we considered a tie to be a second player win, because of the first player advantage, but this

advantage is not applicable to some of the variations. In order to handle these changes in the

game’s characteristics, the best way to figure out what the winning strategies for these variations

is analyzing a game tree, but just like in regular Tic-Tac-Toe, there is a very high number of

branches in each of these game trees, so it becomes necessary to use a computer program to

create these game trees. One program that works well for creating these game trees is MATLAB,

so that is what we will use when looking at some of the other variants of Tic-Tac-Toe.

 The first thing we can do with MATLAB is create a game tree for the regular 3x3 game

of Tic-Tac-Toe. Instead of using X’s and O’s, we can label the first player markers as 1’s and the

second player’s markers as -1’s. We can use this to create a game tree for the 3x3 Tic-Tac-Toe

game. The game tree is stored as a matrix of 3x3 matrices, where each of those 3x3 matrices

represents a board position. The row of the game tree matrix signifies which game of Tic-Tac-

Toe we are looking at, and the column represents the turn number. The program starts in the top

left of the board and moves down the column, then to the next column, looking for the first empty

square to place a marker. So, the 1st row and column of the game tree matrix contains a 3x3

matrix with all 0’s, and the 1st row and 2nd column contains a 3x3 matrix with a 1 in the top left

22

 22

and 0’s in the rest of the matrix. Since the top left element of the matrix has already been filled,

the program will now place a -1 in the top middle element for the next 3x3 matrix. This continues

until there are three of the same marker in a row, column, or diagonal, or all nine elements of the

matrix have been filled. Then the program looks at the second last turn of that game and chooses

a different square for that turn’s marker. If all possible moves have been examined, the program

will move back another turn.

This program does not eliminate rotationally symmetric boards, so the number of

branches in the game tree will be much larger than in the previous chapter. Now, there are

255,168 end positions for the game, with 131,184 games where the first player wins and 123,984

games where either the second player wins or the game ends in a tie. We can then create a

program that uses the F and S positions from earlier to create a separate matrix containing the

winning player for each of the positions, whether they are end positions or not. This matrix labels

each game as 1 or -1, with 1 representing an F position and -1 representing an S position. This

gives us a total of 549,946 positions, with 269,056 F positions and 280,890 S positions. We can

then look at the beginning of the game and see that this is an S position, confirming the results of

the reduced game tree.

4.2. Misère

Since the program for solving the original game of Tic-Tac-Toe works, we can solve

some of the variations of Tic-Tac-toe by editing the code from this program. For example, we can

solve the winner of the Misère variation by making a few changes to the code. One of the

alterations is, of course, switching the F and S positions of a game because a first player win now

becomes a second player win. An even more important change, however, is that now a tie game

cannot be considered a second player win. Since the first player advantage is no longer applicable

to this game, the second player could have a winning strategy. So, we need to edit the code to

23

 23

separate second player wins from draws. This means we must now create a third type of position.

So, we now have F, S, and D positions. This does not change the definitions for F and S

positions, so F positions are still positions where it is either the first player’s turn and he can

move to an F position or it is the second player’s turn and he can only move to F positions.

However, if the second player cannot move to an S position, but can move to a D position, and

similarly if the first player cannot move to an F position, but can move to a D position, the

position is a D position. Once we have done this, as well as a few minor other changes, we can

see that there are still 549,946 positions, since we did not change the possible scenarios that can

happen in the game, but the number of F and S positions has changed. Now, there are 103,160 F

positions, 322,848 S positions, and 123,938 D positions. We can then check the winner at the

start of the game and see that it is a “draw” position. This means that if both players understand

the best strategies in Misère Tic-Tac-Toe, they will draw every time.

Now that we know the winner of this variation, we need to analyze the game tree that the

program gives us to see what strategy the players should follow. When we look at each of the

nine positions for the first X, we can see that eight of these lead to S positions, while one leads to

a draw. This drawing strategy is the middle square for the first move, which is very surprising

because in order to both win and lose a game of Tic-Tac-Toe, the best first move does not

change. After the first player takes the middle square, the player needs to use a mirror strategy.

So, if the second player goes in the top right, the first player should move in the bottom left, and

if the second player goes in the middle left, the first player should respond in the middle right.

This strategy eliminates the possibility of getting three X’s in a row that include the middle

square. Not only that, but it also stops the first player from getting a three in a row anywhere,

because if there are three X’s in the bottom row, this means that there must have been three O’s

in the top row the turn before this one, so the first player would have already won.

24

 24

When the first player takes an edge or a corner square as the first move, the strategy for

the second player to win is not as simple. There are three things the second player needs to avoid:

letting the first player create a mirror strategy, blocking all of the first player’s losing squares, and

losing the game. One of the best strategies for the second player to follow is to never take the

middle square. It is still possible to win without doing so, but this limits the possibility of the first

player preventing the second player from winning. Instead, the best first move is to take a square

clockwise or counter-clockwise from the opposite square that the first player takes. So, if the first

player goes in the top left square, the second player should respond in the middle right or bottom

middle square. This is the best way to avoid those three mistakes. The reason the second player

cannot go opposite the first player, is that the first player can then take the middle square and is

now three moves into his mirror strategy. After this first move, the second player just needs to

avoid the first and third mistake and try to avoid the second mistake as much as possible.

4.3. Veto Tic-Tac-Toe

Another version of Tic-Tac-Toe that does not require too much change to the regular Tic-

Tac-Toe code is a variation called Veto Tic-Tac-Toe. In this variation, on each player’s turn, the

opponent can veto one move. So, if the first player takes the middle square turn one, the second

player can veto that move, and the first player now has to go in another empty square. Each

player can veto up to once each turn. This changes which positions are labelled as F and S.

Instead of requiring the first person to be able to move to one F position on his turn, he now

needs to be able to move to two F positions in order for that position to be an F position, since the

first F position can be vetoed. This also alters the end positions. If eight of the nine squares are

filled up, the first player cannot move in the remaining spot, because it will be vetoed. Thus,

draws are also a possibility in this variation as well. Since the way to win Tic-Tac-Toe has not

been altered, we can still use the first player advantage to assume that if the game is not a first

25

 25

player win, it is a draw game. So, we can once again lump second player wins and draws into the

same category of S position. These are the only differences we need to look at while building the

game tree.

 MATLAB tells us that there are 422,074 positions, with 61,968 F positions and 360,106

S positions. Just like the original game, the starting position is an S position. Once again, we can

look at the matrix of winners to determine what strategies each player should employ. In regular

Tic-Tac-Toe, in order for a player to win, that player must threaten at least two ways to get Tic-

Tac-Toe on his turn. For Veto Tic-Tac-Toe, the player now needs to threaten at least three ways

to get Tic-Tac-Toe, which is much harder to do. This requires the first player to take the middle

square, a corner square, and one of the edges adjacent to both of these squares, so that he

threatens a diagonal, a row, and a column. This means that the second player needs to prevent the

first player from taking the middle square until the first player is unable to create a position that

threatens three wins. Since the second player will veto the first move if it is in the middle square,

the first player now needs to take an edge or a corner square. In either case, the second player

should take a square adjacent to the first move. If the first move was an edge, the first player can

no longer create the structure needed to threaten three wins that contains his first move, so he

needs to start over in a different part of the board. If the first move is a corner, the second player

should veto the middle square again for the second turn. Now, the only way for the first player to

create the winning structure is by taking the edge adjacent to his corner that is still empty. This

means the first player has two X’s in a row. The first player now has the choice to either veto the

middle square or veto the square that blocks his two X’s in a row. Either way, the structure can

no longer threaten three ways to win, so the second player can force a tie.

26

 26

4.4. Notakto

 Notakto is a variation of Veto Tic-Tac-Toe where both players use an X. This means that

if the first player places two X’s in a row, and the second player places a third X to complete the

row, this counts as the game ending, and the first player would win. This means we can use the

same code as the Veto Tic-Tac-Toe code, with two differences. Instead of using 1’s to represent

X’s and -1’s to represent O’s, we would only use 1’s, because both players use X. Also, ties are

not possible in this version of Tic-Tac-Toe, because the board can never be completely filled with

X’s without one of the players winning. This severely limits the number of possible board states.

One of the reasons the number of board states decreases is because the game will always end by

turn 7, since any time there are seven X’s on a 3x3 board, there is at least one row, column, or

diagonal with three X’s. So, the game tree matrix for our MATLAB code is a matrix that is 23232

by 8.

 When we run the MATLAB program, we see that there are 34,560 positions. 23,952 of

these positions are F-positions and 10,608 of these positions are S-positions. The program also

tells us that the original board state is an

F-position, so Notakto is a first player

win game. Now, we must figure out

what the winning strategy is. The first

thing we can do is look at all the

positions where any move causes the

last person to move to lose. This is

shown in Figure 4-1.

So, there are six different positions

where one more X will cause the game

to end. This is important to look at

27

 27

because the top and bottom row have an even number of X’s. This means the game will end with

an odd number of X’s, which means the first player loses the game. In order for the first player to

win the game, his strategy is to force the game to become one of the positions in the middle row.

We can determine that the best move for the first player is the middle square, because this

eliminates two of the three positions where the second player wins. Now the first player just

needs to avoid creating a 2x2 square of X’s on the board. The best way for the first player to do

this is by placing an X opposite to a square that is adjacent to the second player’s last move,

similar to how a knight moves in chess. So, if the second player plays in the top right, the

opposite adjacent squares are the bottom middle and middle left squares. This eliminates all of

the ways for the second player to win, but we can also make the strategy simpler. After the first

player takes the center square, if he responds with a “knight move” to

each move the second player makes, while avoiding getting three X’s

in a row, the first player can always force the game to look like

Figure 4-2. While this strategy is not necessary to win on one board,

Notakto is normally played on multiple boards. In order to play on

multiple boards, we need to look at the new rules of the game. Each turn, the player can play on

any of the boards, but once there are three X’s in a row, column, or diagonal on a board, neither

player can play on that board. So, the last player to win the last board loses the game.

 Now, we can look at Notakto on two boards. Since each individual game ends by turn

seven, two games will end by turn fourteen, and since there are 23,232 branches in the individual

games, we can square that number to get the number of branches for Notakto with two boards.

This means the game tree matrix is 539,725,824 by 15. This is too large for MATLAB to handle,

so we need to analyze this game without technology. One strategy that is common in Game

Theory with multiple boards is the “copy-cat” strategy. With this strategy, wherever the first

player plays, the second player responds in the same position on another board. However, in

28

 28

Notakto with two boards, if the second player does this, the second player will win the last board,

and lose the game. Instead, the second player can employ the copy-cat strategy until the first

player creates one of the “end positions” that we looked at earlier. Once this happens, the second

player should make three in a row on the other board, and the first player is forced to lose. This

strategy works in most games, however if the first player’s first two moves are in opposite

corners, the first player can end the board after the second player copies him. Now the first player

can force the second player to win the remaining board, since the middle square is no longer

available for the second player to take. This same problem arises when two of the first player’s

first four moves are opposite corners. So, we must come up with a different strategy for the

second player.

 Since the middle square gives the first player control over one board, we can look at what

happens when the second player tries to take the middle square on two boards. This means that

whatever the first player chooses as his first move, the second player can respond in the middle

square of the unused board. This means there are three cases: the first player’s first move was in a

middle square, a corner square, or an edge square. If the first player’s move was in a middle

square, this means wherever the first player goes for his second move, the second player can

respond by winning that board. Now, we are left with one board with the middle square already

taken. This means this game is now equivalent to a single board of Notakto where the second

player moved first and took the middle square. So, if the first player’s first move is in the middle

square, and the second player responds in the other middle square, this game is a second player

win. If the first player instead takes a corner square as his first move and the second player takes

the other middle square, there are a limited number of options for the first player’s next move.

This first player cannot take a square in the same row or column as his first move, because the

second player will win that board, and we will have the same situation as before. So, the first

29

 29

player can either play in an adjacent edge or an opposite corner on the same

board as his first move or he can play in the board that the second player has

played. If he does the former, the second player can respond in either case to

create the board position in Figure 4-3, which we will call the “Setup” board.

Now, if the first player responds in this board again, the second player can end

that board, so the first player is forced to play in the other board. Now, the second player can

force the first player to win that board by using the knight move. If the first player at any point

plays in the Setup board, the second player can win that game and use the knight move to force

the first player to win that game. So, once the first player has won the other board, the second

player can play in the top right corner of the Setup board, to force the first player to win the board

in two moves. Thus, the second player will win that game. A similar scenario happens if the first

player takes an edge square as his first move instead of the corner square, because his next move

is limited to either of the opposite edges. Thus, the second player can create the Setup board

again to win the game. Thus, if the second player responds in the middle square of the empty

board for a game of Notakto with two boards, the second player can win the game. So, Notakto is

a first player win with one board, and a second player win with two boards.

30

 30

CHAPTER 5: Summary of Results

 An original game of Tic-Tac-Toe has two players play on a 3x3 board, where the first

player and second player take turns placing an “X” or “O” respectively on the board. The game

ends either when one player wins by placing three markers in a row, either horizontally,

vertically, or diagonally, or when all nine squares are filled, which causes a draw if nobody has

already won. We used a game tree, which is a mapping of all the possible board positions in the

game as well as which board positions lead to other board positions; as well as a system for

labelling each position, to determine which player won the game. We created a game tree by

manually by limiting the board positions we looked at by removing board positions that are

symmetric and by limiting each player’s moves so they did not make a move that is clearly worse

than another potential move. We also created a program through MATLAB that outputs the entire

game tree. Both of these game trees were analyzed to show that Tic-Tac-Toe is a game where the

second player could always force a tie.

 Next, we looked at adding squares to the 3x3 board of Tic-Tac-Toe. The three additional

squares we added are an extra side square, an extra corner square, and an extra corner side square.

With each of these additional squares, the first player’s best first move was to play in the same

row, column, or diagonal as the added square. When an extra side square is added, as well as

when an extra side corner square is added, the first player was able to make the new square

unusable, while turning the remaining 3x3 board into a position where the first player would win.

However, adding an extra corner square did not affect the winner of the game. So, adding an

extra side or corner side square created a first player win, while adding an extra corner square

kept the outcome of the game as a draw.

 Instead of just adding individual squares, we looked at how the game changes when we

add entire rows and columns to the board. We were able to use a “pairing strategy” where for

every move that the first player makes, there was a square on the board paired with that move that

31

 31

the second player would place his marker in. To create a pairing strategy, we labelled two squares

in every row, column, and main diagonal with the same number. This meant the pairing strategy

blocked every row, column, and diagonal from the first player. This strategy worked for all

square Tic-Tac-Toe boards that are 5x5 and bigger. However, when we looked at a 4x4 board, the

same pairing strategy could not be employed. This was because a square board of size s x s must

satisfy the following equation in order to create a pairing strategy:

𝑠2 = 4𝑠 + 4

Since a 4x4 board did not satisfy this equation, we had to create a modified pairing strategy. This

modified strategy required the first player to make his first three moves and the second player to

make a specific first two moves. We were then able to create ten pairing strategies that covered

every option for the first player’s first three moves. So, as long as the second player followed the

correct pairing strategy, he could force a tie in 4x4 Tic-Tac-Toe as well.

 We also looked at the affect of adding a third dimension to Tic-Tac-Toe to create a 3x3x3

board. With a third dimension, the number of ways to get three in a row increased significantly.

In 3x3 Tic-Tac-Toe, there were eight ways to get three in a row, but in 3x3x3, there aere forty-

five ways to get three in a row. Since there were only twenty-seven squares in 3x3x3 Tic-Tac-

Toe, this means we could not use a pairing strategy. However, the only strategy the first player

typically needed was to place a marker in the middle square during his first move. As long as he

prevented the second player from winning and tried to get three markers in a row whenever

possible, the first player was almost guaranteed a win. There was also a board game called Otrio

where each player has three small, medium, and large circles. The winner of Otrio was the first

player to get three circles of the same size in a row, column, or diagonal; all three sizes of circles

in one square; or one of each sized circle in a row, column, or diagonal in either ascending or

descending order. This was similar to 3x3x3 Tic-Tac-Toe, except we used the circles’ sizes to

32

 32

represent the third dimension. Each player also had only three of each size circle, so the first

player had to play with a specific strategy in order to win. The first player placed his medium

circle in the middle square. Depending on the second player’s reaction, the first player’s winning

strategy would change a bit, but the first player was able to win Otrio regardless of the second

player’s moves.

 The next Tic-Tac-Toe variation we looked at was Misére Tic-Tac-Toe, where the goal of

this game was to force the other player to get three markers in a row. We used MATLAB

program from 3x3 Tic-Tac-Toe by making some slight alterations to the code. The MATLAB

program showed us that if the first player’s first move was in the middle square, the game would

end in a draw, but if the first player’s first move was any other square, the second player would

win. So, the first player’s strategy to draw was to take the middle square as his first move. After

this, the first player responded in the opposite square of the second player every turn. This

ensured that the first player does not get three markers in a row first.

 Another variation we analyzed is Veto Tic-Tac-Toe. In this game, each turn, the

opponent had the option to veto one move. If a player’s move was vetoed, that player chose

another empty square in which to play. In normal Tic-Tac-Toe, a player was required to threaten

two ways of getting three markers in a row to win, but in this variation, the player had to threaten

three ways of getting three markers in a row. We changed the MATLAB program to analyze this

game, and this told us that the game always ended in a draw. This was because in order to set up

three threats on the board, this required the middle square and two other squares. Since the

second player’s best strategy prevented the first player from playing in the middle square for the

first few turns and stopped the first player’s setup during those first three turns as well, the first

player was not able to set up three threats on the board successfully.

 The last variation we looked at was Notakto. In this game, both players used an “X” as

their markers, and the game was played on any finite number of boards. Once a board had three

33

 33

X’s in a row on it, the board could not be used anymore. The player who finished a row, column,

or diagonal of three X’s on the final board loses. We altered the MATLAB code again, and the

program told us that this game was a first player win. The strategy behind this stemmed from the

fact that there were only six ways for the board to end as long as neither player got three markers

in a row before it was unavoidable. Three of these positions resulted in the second player

winning, and three of them resulted in the first player winning. The first player avoided the three

“second player win positions” by placing his first X in the middle square, and then responded in

the square that is opposite to a square adjacent to every move that the second player made. This

was similar to how a knight moves in Chess. This resulted in a first player win.

 We then extended this information to a game of Notakto with two boards. One strategy

that the second player employed was to place his first marker in the middle square of the empty

board. This allowed the second player to set up that board either as a first player win or as a board

he could sacrifice. The second player then used knight moves to force the first player to either get

three in a row on both boards, or the second player “sacrificed” a board in order to force the first

player to win the final board, depending on the first player’s responses. Thus, Notakto with two

boards was a second player win game.

34

 34

CHAPTER 6: Future Work

 The last variation of Tic-Tac-Toe we looked at was Notakto. This game could be played

on any finite number of boards, but during this research I only looked at playing on one or two

boards. Since the game tree for two boards was too large for MATLAB to handle, the game tree

for three boards will also most likely be too large for MATLAB to handle. If I were to continue

analyzing Notakto with more boards, the two options I would pursue are to either use the

information from the one and two board strategies and try to find patterns within them that could

help with a strategy for three boards or decrease the size of the game tree the MATLAB program

needs to create, like I did in Section 2.1 for 3x3 Tic-Tac-Toe. Reducing the game tree makes the

number of first moves we need to look at decrease from twenty-seven to three, since it does not

matter which board the first player’s first marker is placed. However, the MATLAB program

would need to be adjusted a lot in order to remove symmetric boards, and once I look at more

than three boards, the reduced matrix will eventually be too large for MATLAB, so I would start

with the first approach.

Another variation that I never analyzed in the paper was Tic-Tac-Toe Forget. In this

variation, each marker disappears after it is on the board for three turns. After playing this

variation for months, I have made an assumption that the game will result in neither player

winning or losing if both players play optimally, so my analysis of the game will start with that

assumption, until I am either proven right or the assumption breaks. Once again, I have two ways

to approach finding the winning player and strategy. The first option is to find every possible

arrangement of three X’s and three O’s where neither player can win within the next turn. If both

players can prevent the other player from winning, this means that there are multiple cycles of

these positions of three X’s and O’s where either player can force the game to continue

indefinitely through these cycles while avoiding any other positions. There are a lot of positions

with three X’s and three O’s though, especially considering that the order each marker was

35

 35

played is considered a different position, so this next approach would most likely be what I use to

find the winner. Due to the game’s rules, there are a very limited number of ways in order for a

player to win. In order to win, the winner must have two markers surrounding one of the loser’s

markers, and the loser’s marker must disappear this turn, while the winner’s two markers cannot

disappear this turn. I would start by marking down these positions and seeing what circumstances

must arise in order for these positions to be possible. Assuming both players can prevent the other

player from winning, this means there must be some contradiction among those circumstances for

each position.

36

 36

APPENDIX

The following is the MATLAB code for the game of Tic-Tac-Toe.

clear;

clc;

T{255169,10}=[];

W=zeros(255168,10);

M0=[0,0,0;0,0,0;0,0,0];

M{1,1}=[1,0,0;0,0,0;0,0,0];

M{2,1}=[0,0,0;1,0,0;0,0,0];

M{3,1}=[0,0,0;0,0,0;1,0,0];

M{1,2}=[0,1,0;0,0,0;0,0,0];

M{2,2}=[0,0,0;0,1,0;0,0,0];

M{3,2}=[0,0,0;0,0,0;0,1,0];

M{1,3}=[0,0,1;0,0,0;0,0,0];

M{2,3}=[0,0,0;0,0,1;0,0,0];

M{3,3}=[0,0,0;0,0,0;0,0,1];

n=1;t=1;

T{n,t}=M0;

for t1=1:9

i=t1;j=1;

 while i>3, i=i-3;j=j+1;

 end

 t=t+1;

 T{n,t}=M{i,j};

for t2=1:9

i=t2;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}-M{i,j};

 for t3=1:9

i=t3;j=1;t4=0;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}+M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

37

 37

 if abs(c(1,1:3))~=3

 % Turn 4

 for t4=1:9

i=t4;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}-M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 % turn 5

 for t5=1:9

i=t5;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}+M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 % turn 6

 for t6=1:9

i=t6;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

38

 38

 T{n,t}=T{n-a,t-1}-M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 % turn 7

 for t7=1:9

i=t7;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}+M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 % turn 8

 for t8=1:9

i=t8;j=1;a=0;

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}-M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 % turn 9

 for t9=1:9

i=t9;j=1;a=0;

39

 39

 while i>3, i=i-3;j=j+1;

 end

 if numel(T{n-a,t})==0

 while numel(T{n-a,t})==0

 a=a+1;

 end

 end

 if T{n-a,t}(i,j)==0

 t=t+1;

 T{n,t}=T{n-a,t-1}+M{i,j};

 d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)';

 for x=1:3

 d1=d1+T{n,t}(x,x);

 d2=d2+T{n,t}(x,4-x);

 end

 if abs(d1)~=3

 if abs(d2)~=3

 if abs(r(1,1:3))~=3

 if abs(c(1,1:3))~=3

 W(n,t)=-1; n=n+1; t=t-1;

 else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t9==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

40

 40

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t8==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t7==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

41

 41

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t6==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t5==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

42

 42

 end

 end

if t4==9

 t=t-1;

end

 end

else

 for x=1:3

 if abs(c(1,x))==3

 W(n,t)=c(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 else

 for x=1:3

 if abs(r(1,x))==3

 W(n,t)=r(1,x)/3;

 n=n+1;t=t-1;

 end

 end

 end

 elseif abs(d2)==3

 W(n,t)=d2/3;

 n=n+1; t=t-1;

 end

 elseif abs(d1)==3

 W(n,t)=d1/3;

 n=n+1; t=t-1;

 end

 end

if t3==9

 t=t-1;

end

 end

 end

if t2==9

 t=t-1;

end

end

end

TT{255168,10}=0;

for x=1:255168

 for y=1:10

 if numel(T{x,y})==9

 TT{x,y}=T{x,y};

 end

 end

end

for t=10-(0:8)

 nn=n-1;

 while nn>1

 c=1;V=zeros(1,9);

 while numel(TT{nn,t-1})==0

 if numel(TT{nn,t})==9

 V(1,c)=W(nn,t);

 c=c+1;

 end

 nn=nn-1;

 end

43

 43

 V(1,c)=W(nn,t);

 if mod(t,2)==0 && sum(V(:)==1)>0

 W(nn,t-1)=1;

 elseif mod(t,2)==0 && sum(V(:)==1)==0

 W(nn,t-1)=-1;

 elseif mod(t,2)==1 && sum(V(:)==-1)>0

 W(nn,t-1)=-1;

 elseif mod(t,2)==1 && sum(V(:)==-1)==0

 W(nn,t-1)=1;

 end

 nn=nn-1;

 end

end

44

 44

REFERENCES

Friedman, E. (2011). Introduction to Game Theory. Stetson University, pp. 7-8

József, B. (2008). Combinatorial Games: Tic-Tac-Toe Theory. Encyclopedia of Mathematics and

its Applications, Cambridge: Cambridge University Press, p. 74

Ibraham, Joe. “Make Tic-Tac-Toe Look Like Child’s Play with Otrio.” The Toy Insider, 2 Mar.

2018, www.thetoyinsider.com/otrio-game-review/

http://www.thetoyinsider.com/otrio-game-review/

