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ABSTRACT 

 

EXPLORING TIC-TAC-TOE VARIANTS 
 

By 

Alec Levine 

May 2018 

 

Advisors:  Dr. Friedman 

Department:  Mathematics and Computer Science 

 

Tic-Tac-Toe is an ancient game that has been solved so many times that the optimal 

moves are common knowledge, and the game always ends in a draw. However, when the rules to 

the game are changed, even slightly, the winning strategy becomes completely different.  

This senior research is focused on variations of Tic-Tac-Toe and the effects they have on 

the winning strategies. The first variations we solved were Tic-Tac-Toe boards of varying sizes. 

This included the original 3x3 game board, the original game board with additional squares added 

in different places, and every square board larger than the size of 3x3. The other Variations that 

we look into are 3x3x3 Tic-Tac-Toe; Otrio, where players can choose between three different 

sizes for their markers; Veto Tic-Tac-Toe, where each player can “veto” one move each turn; the 

Misère version of Tic-Tac-Toe, where the last player to make a move loses; and Notakto, where 

each player plays only X’s and the last player to make a move loses. 
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CHAPTER 1: An Introduction to Game Theory 

 

1.1.  P-Positions and N-Positions 

This senior research is on Tic-Tac-Toe variations and how to find the winning strategies 

for each of them. Before we can look at actual games, though, we must first look at some 

important aspects of game theory. Game theory is a branch of mathematics that has existed for 

many years and has been used to solve the winning strategies for many different games, such as 

Tic-Tac-Toe, Nim, and even obscure “games” such as the Prisoner’s Dilemma. Game theory has 

even branched out to scenarios that most people would not consider a “game.” Mathematicians 

have numerous ways of determining the winning strategies in these “games.” 

One classification of games that is very important is “combinatorial games.” These 

games have multiple characteristics, such as they cannot end in a draw and each player alternates 

taking turns. One way of deciding who will win a combinatorial game is by creating a game tree 

and labeling it with “P-positions” and “N-positions.” P-positions and N-positions are categories 

for each “position” in a game. A P-position is a position where the previous person has a winning 

strategy, while an N-position is a position where the next person has a winning strategy. A huge 

result of this categorizing of positions is that any time a player can move to a P-position, the 

current position is an N-position. Consequently, this means that any time a player cannot move to 

a P-position, they are currently at a P-position (Friedman). Using these two statements, we can 

create a game tree for a game to find the winner. However, in Tic-Tac-Toe, a game that ends in a 

draw is not only possible, but it is common. Normally, this means that we cannot use P-positions 

and N-positions when discussing Tic-Tac-Toe, but in Section 1.3, we discover why we can use a 

similar labelling of positions to create a game tree to determine who wins. 
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1.2.  Game Trees 

A game tree is a mapping of all the possible outcomes of a 

game, where the beginning game position branches into all the 

possible positions that the first move can create, and it continues 

until no more moves can be made. Figure 1-1 is a diagram of a 

game tree for a game called “The Subtraction Game”. In this version 

of the game, there is a pile of beans, and each player takes turns 

removing either two or three beans from the pile. So, if the pile starts 

with six beans, the next player’s option is to take away two beans, 

leaving four in the pile, or three beans, leaving three in the pile. This 

can be seen in the game tree, because the position representing six 

beans has two arrows protruding from it, one going to the four, and 

one going to the three, depicting the two options the player has. The 

P-positions have been shaded, while the N-positions are unshaded. 

In order to determine which positions are P and which are N without 

the diagram, we would start with all of the end positions of the 

game. The end positions are any positions where the next player has 

no possible moves. Since every end position cannot move to a P-position, they must be P-

positions. That means the end positions for this game, zero beans and one bean, are P-positions. 

Then, we look at each pile of beans that can lead to a pile of zero beans and one bean and label 

them as N-positions. We continue to use the two statements explained in Section 1.1 to create the 

entire game tree for this Subtraction game. We can use this diagram to determine that when the 

game starts in a P-position, the second player will win, and when the game starts on an N-
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position, the first player will win. So, if there is a pile of 8 beans, we can see that the first player 

will win this game. 

 

1.3.   First Player Advantage 

Before we look at a game of Tic-Tac-Toe, we must also learn about the first player 

advantage. In many games, the first player has an inherent advantage, and some of this can be 

explained by the “strategy stealing argument.” The strategy stealing argument is used for games 

like Tic-Tac-Toe, where both players have the same options, and each move does not put that 

player at an inherent disadvantage. If we assume that the second player has a winning strategy, 

the first player can take that winning strategy after making a move that does not put him at a 

disadvantage and does not prevent him from taking the strategy. Thus, if the second player has a 

way to win in a game like Tic-Tac-Toe, the first player can steal the win (József). Since the 

second player technically has no way of winning, we can consider the second player forcing a 

draw as the second player “winning” the game. This changes how we create the game tree. 

Instead of labeling each position as N and P, we can label them as “F” and “S”, where F means 

the first player can win and S means the second player can draw. This causes some major 

differences in the game tree, which can be seen in the next chapter. 
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CHAPTER 2: Tic-Tac-Toe 

2.1.   The Original Game 

  Now that we understand the basics behind game theory, we can look at a regular game of 

3x3 Tic-Tac-Toe. Since the second player 

cannot win, we will focus on whether or 

not the second player can prevent the first 

player from winning. Thus, a draw is 

viewed as a second player win for the 

purposes of an original game of Tic-Tac-

Toe. One way to figure out who wins a 

game of regular Tic-Tac-Toe is by creating a game tree, however there are hundreds of thousands 

of possible outcomes for the game. Figure 2-1 shows a game tree for Tic-Tac-Toe that only 

contains the first few positions, and the number of branches we would create with each new move 

grows exponentially. To make the game tree much more manageable, we can put a restriction on 

how each player chooses his next move. 

We can restrict each player to prefer placing their X or O in a winning spot, over any 

other spot. We can also force each player to prefer blocking an opponent’s winning move if that 

player does not have a winning move. The last thing we can do to limit the game tree is by 

ignoring every position that is symmetrically equivalent to another position. Now, instead of 

there being nine original moves that the first person can make, there are three: a corner space, an 

edge space, and the middle space. Figure 2-2 shows one branch of this game tree, with each 

position labelled in the top right corner as either an S or F position. As we can see, the branch 

ends in an S because the second player creates a draw in this scenario. With P and N positions, 

the label depends on what each position can move to, as discussed in Chapter 1, but when we use 

F and S, determining which label to use becomes more complicated. We can define an F-position 
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as any position where the first player 

has won, the first player can move to an 

F-position, or the second player can 

only move to F-positions. Likewise, an 

S-position is any position where the 

second player has forced a draw, the 

second player can move to an S-

position, or the first player can only 

move to S-positions. So, we can label 

the bottom of the branch as an S-

position, because the first player did not 

win the game. We can use these new 

definitions to determine that this branch 

leads to a second player draw. The 

entire game tree ends with ninety-five 

branches that a game of Tic-Tac-Toe 

can take, where eighty-three of those 

paths end in a draw, ten of them result 

in the first player winning, and two 

paths end in the second player winning. 

Using this game tree, we discover that 

if the first player places an “X” in the 

middle square, the optimal move for the 

second player is to place an “O” in a 

corner square. Similarly, if the first 
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player takes either a corner or edge piece as his first move, the second player should take the 

middle square. This ensures that the second player will have a way of forcing a draw. 

 

2.2.   Additional Square 

Before we add more rules to the game, we should first look 

at what happens when we change the board. The first thing we can 

look at is what happens when a square is added to the board. This 

simplifies the game a lot. If we look at a board with an extra square 

next to an edge square, there is a clear strategy for the first player to 

win. If he places an X as seen in Figure 2-3, the second player is forced to place an O in the 

middle row. If the second player does not place an O in the middle row, the first player can place 

an X directly to the right of his first move and now threatens a win with two separate moves. 

Since the second player can only prevent one of these moves, the first player will win. However, 

if the second player decides to place an O in the middle row, it is either in an edge square or the 

new square. Since both players can no longer use the new square to get three makers in a row, we 

can relate this game to a normal 3x3 board and look at our game tree again. If the second player 

takes an edge square, the game tree shows that the first player will win. If the second player took 

the new square, it is as if the second player never placed an O during his first turn on a 3x3 board, 

which is strictly worse than taking an edge square, so the first player will still win. Thus the first 

player has a definitive winning strategy on this board. 

There are two other places where we can add an extra 

square. Figure 2-4 shows a board with an extra square 

adjacent to a corner square. As we can see in the figure, the 

first player’s best first move is in the square in the first row 

and third column. Similarly to the board with an extra square 
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next to an edge piece, the second player’s options are very limited. In order to avoid the same 

situation as Figure 2-3, the second player is forced to move in the corner. The first player can 

then follow the moves in the figure to ensure a win. 

A square can also be added diagonally adjacent to a corner, as seen in Figure 2-5. This 

square creates the least variation from an original game of Tic-

Tac-Toe. No matter where the first player places his first X, the 

second player can place his O in a square that blocks off the 

corner piece, thus turning the board into a regular 3x3 board. 

Thus, the second player can force a draw. 

 

2.3.   5x5 Game Board 

  Instead of adding single squares, we can now look at how the game changes when we add 

entire rows and columns to the game. For example, we can figure out who will win a Tic-Tac-

Toe board with five rows and five columns, where each 

player’s goal is to make a line using five of his markers 

instead of three. We can see that, since there are five rows, 

five columns, and two diagonals, there are twelve different 

ways to get five markers in a row. A game tree becomes 

even more impractical. Instead of creating a game tree, we 

can try to create a strategy the second player can enjoy that 

will always prevent the first player from winning. One strategy we can use is a pairing strategy, 

where each position has a paired position, and if the first player takes one of these positions, the 

second player will take its pair. Figure 2-6 shows one possible pairing strategy the second player 

can use. The reason this works is because every row, column, and diagonal has a complete pair of 

positions. That means that since there are twelve ways to get five in a row, we need twelve pairs, 
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or twenty-four squares, to create the pairing strategy. Since a five by five grid has twenty-five 

squares, we have one extra space that does not need a pair, which is why the middle square in the 

diagram is blank. We can create an equation to determine if a grid has enough spaces to use a 

pairing strategy. For any board of size s by s, there are s2 squares available. The number of pairs 

we need is s+s+2, because we need one pair for each of the s rows, each of the s columns, and 

the two diagonals. Since we need two squares for each pair, we can create the following 

inequality to determine if the board has enough squares for a pairing strategy. 

 

Since this equation holds true for any integer greater than four, the second player has enough 

empty squares for a pairing strategy for all square boards of size 5 by 5 or greater.  

 

2.4.   Larger than 5x5 Board 

  Although there are enough spaces to create a pairing strategy for boards of size 6 by 6 

and greater, this does not necessarily mean that we can use a pairing strategy. Proving that there 

is at least one existing pairing strategy for these boards requires a more rigorous proof. To prove 

this, we must first create labels for different aspects of a Tic-Tac-Toe board. First, let us define 

each square individually. Let a square be represented by a pair of coordinates (x, y), where “x” is 

the row of the square, and “y” is the column of the square. Thus, the square in the 3rd row and 4th 

column of a grid can be represented by the coordinate (3, 4). Next, let us create a symbol for 

representing each pair in the pairing strategy. Let (a, b) and (c, d) be the two squares used in a 

pairing strategy. We can represent this by writing a “&” between them, such that (a, b) & (c, d) is 

a pair. Let “s” be used to represent the number of rows and columns in a board of size s by s. 

Since there are s rows and columns, we can represent these as Rn and Cn, where “n” is the 

specified row or column number. There are also two diagonals, so we can define D1 as the 

descending diagonal from left to right, and D2 as the ascending diagonal from left to right. Now, 
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we can create the equations.

 

So, for an 8x8 board, the diagonal pairs would be (4, 4)&(5, 5) and (4, 5)&(5, 4) using these 

equations. Since each of these squares is unique for boards of size 6 by 6 or greater, these 

equations can be used to create a pairing strategy for these boards. Figures 2-7 and 2-8 show the 

pairing strategies for a 6x6 and 7x7 board using these equations. Similarly to the 5x5 pairing 

strategy, these grids also have empty squares. However, the number of squares differs. We can 

actually calculate this by using equation (1). The difference between the left side and right side of 
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the equation calculates the number of empty squares that should appear on the grid. So, for a 6x6 

grid, since the difference between thirty-six and twenty-eight is eight, there should be eight empty 

squares on the grid, which can be seen in the figure. 

 

 

2.5.   4x4 Game Board 

  Now we need to look at the square board of size four and 

discover a new way to figure out who wins this game. Since the 

board requires ten pairs for the pairing strategy, but there are only 

sixteen squares, the second player cannot simply use a pairing 

strategy, however we can force the second player to make specific 

choices during his first two moves, as seen in Figure 2-9. The 

reason this set of moves is important is because no matter what the 

first player’s first two moves are, the second player can always move to some rotation of this 

figure. Now there are only five options for four markers in a row, and fourteen empty spaces (the 

sixteen original spaces minus the two O’s). Now the pairing strategy is viable, but there is a huge 

problem. We have no way to predict the first player’s first three moves. In order to create a 
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successful pairing strategy, we must create a different pairing strategy for each possible 

combination of squares the first player decides to take. This is where the unused spaces become 

important. Since we need to make five pairs, and there are fourteen 

empty spaces, we can look at the options for the four unused squares 

to create grids. Figure 2-10 shows one such grid, where the unused 

squares are marked “B” for “Blank”. We can then construct a 

pairing grid with these four blank squares, as seen in Figure 2-11. 

Of course, whether or not we can use this grid depends on the first 

player’s first three moves, since after our second “O”, the first player will make a total of three 

moves. Any grid using the blank square setup can only be used when the first player has taken at 

least two of the blank squares as his first three moves. Now, we must create a grid, using this 

blank square strategy, for every possible first three moves that the first player can make. 

Similarly to our game tree for the 3x3 board, we can use symmetry 

to erase most of the possibilities. Instead we can split up his choices 

into four categories: the first three moves can either contain two or 

more edges, the two remaining middle squares, two or more corners, 

or a corner, a middle square, and an edge square. The following 

page shows the pairing strategies for each category. Note that the 

last pairing strategy shown is the same as the “2 Middle” grid. Thus, 

the second player can create a draw in a 4x4 game of Tic-Tac-Toe if that player follows the nine 

grids seen in Figure 2-12. 
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CHAPTER 3: 3D Tic-Tac-Toe 

3.1.   Adding the Third Dimension 

The next step after adding rows and columns, is adding dimensions. This means we can 

look at a board that is 3x3x3. The rules of the game are very similar to regular Tic-Tac-Toe. Each 

player takes turns placing an X or O in an empty square, and the first player to get three X’s or 

O’s in a row, column or diagonal wins, but now the player can also get three in a row through the 

third dimension, either in a vertical column or a diagonal line through the three layers. For 

simplicity, we will separate the 3x3x3 board into three separate boards, labelling each layer from 

one to three, with the middle layer as layer two. Just like in 3x3 Tic-Tac-Toe, the best move for 

the first player is in the middle square of the board, which would be the middle square of layer 

two. This is because the middle square gives the first player thirteen ways to get three in a row, 

while a corner square, a middle square, and an edge square in layer one or three give five, five, 

and four ways to win respectively. The edge and corner squares of layer two only give three and 

four ways to win respectively. 

After the first player plays in the middle square, the second player’s moves can be put 

into three different categories: the second player will either play in the middle of another layer, in 

an edge or corner of another layer, or in an edge or corner in layer two. Without loss of 

generality, we can assume that if the second player chooses to start on either layer one or layer 

three, he will start on layer one. If the second player responds in the middle of layer one, the first 

player should respond by playing in layer one. This threatens a diagonal through the layers, so the 

second player must be respond in the opposite square of layer three to stop the first player from 

winning. Now, the first player should place his X adjacent to the X he placed on layer one. Now, 

the first player threatens two ways to win, and the second player can only stop one of these, so 

the first player wins. The second player also has the option to play in an edge or corner of layer 
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one instead. If he does, the first player should respond in the middle of that layer. This threatens a 

vertical column through the middle of the layers, so the second player has to respond in the 

middle square of layer three. Now, if the first player places an X in any empty square on layer 

one, he threatens two ways of winning, and has won the game. The last possible first move for 

the second player is in layer two. If that happens, the first player should use the same strategy as 

the previous case, by taking the middle square of layer one and then an edge or corner square in 

layer one to win. So, the game of 3x3x3 Tic-Tac-Toe is a first player win. 

 

3.2.   Otrio 

  In 2015, Brady Peterson designed the game Otrio, which was marketed as “Next Level 

Tic-Tac-Toe.” In this game, each player has nine circles, with three large, three medium, and 

three small circles. These circles are colored to differentiate which player used which circle. The 

board is similar to a Tic-Tac-Toe board, however once a circle has been placed in a square, the 

other two sizes of circles are still able to be placed in that square. The winner of Otrio is the first 

player to get three circles of the same size in a row, column, or diagonal; all three sizes of circles 

in one square; or one of each sized circle in a row, column, or diagonal in either ascending or 

descending order. This game can be played with two to four players, but we will only look at the 

strategy for two players. 

  This game is very similar to 3D Tic-Tac-Toe, if we view each circle size as one of the 

“layers” in 3D Tic-Tac-Toe. This means the only difference between Otrio and 3D Tic-Tac-Toe 

fundamentally is that each player is limited to three circles of each size, which in 3D Tic-Tac-Toe 

would be equivalent to saying each player can only place three markers in each layer. Since our 

strategy for 3D Tic-Tac-Toe never required the first player to place three markers in a single 

layer, the same strategy can be applied to Otrio for a first player win. We just need to adjust the 

strategy so it handles circle sizes instead of layers. So, the first player should start with the 
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medium size circle in the middle square. Similar to 3D Tic-Tac-Toe, we can assume that the 

second player if the second player chooses either the small or large circle, he will choose to use 

the small circle. If the second player places a small circle in an edge or corner, the first player 

should respond with the small circle in the middle square. Now, the first player has a medium and 

small circle in the middle square, so the second player must place a large circle in the middle 

square. The first player can place another small circle in any empty edge or corner square and 

threaten two ways of winning. Alternatively, the second player’s first move could be a small 

circle in the middle square. Then, the first player should respond with a small circle in any edge 

or corner square. The second player must place a large circle opposite this small circle to stop the 

first player from winning. The first player should place a small circle adjacent to his previous 

small circle to threaten to ways of winning. The last option the second player has for his first 

move is to place a medium size square in an edge or corner. The first player should place a small 

circle in that same square. The second player must place a large circle opposite this small circle. 

Now, the first player can threaten two ways of winning by placing a small circle in the same 

square that the second player just played in. So, just like 3D Tic-Tac-Toe, Otrio is a first player 

win. 
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CHAPTER 4: Technology 

4.1.   MATLAB 

Now that we have looked at varying sizes for Tic-Tac-Toe boards and how they impact 

the winner of the game, we can start changing the rules of Tic-Tac-Toe. However, changing the 

rules of the game makes finding the winning strategy much more difficult to do without a 

computer. One of the big reasons for this is that the best first move is not apparent. In regular Tic-

Tac-Toe, the middle squares are always the best squares because they create the most 

opportunities for getting three markers in a row, but when the rules of the game starts changing, 

this is not necessarily the best first move. Another important feature of normal Tic-Tac-Toe is 

that we considered a tie to be a second player win, because of the first player advantage, but this 

advantage is not applicable to some of the variations. In order to handle these changes in the 

game’s characteristics, the best way to figure out what the winning strategies for these variations 

is analyzing a game tree, but just like in regular Tic-Tac-Toe, there is a very high number of 

branches in each of these game trees, so it becomes necessary to use a computer program to 

create these game trees. One program that works well for creating these game trees is MATLAB, 

so that is what we will use when looking at some of the other variants of Tic-Tac-Toe. 

 The first thing we can do with MATLAB is create a game tree for the regular 3x3 game 

of Tic-Tac-Toe. Instead of using X’s and O’s, we can label the first player markers as 1’s and the 

second player’s markers as -1’s. We can use this to create a game tree for the 3x3 Tic-Tac-Toe 

game. The game tree is stored as a matrix of 3x3 matrices, where each of those 3x3 matrices 

represents a board position. The row of the game tree matrix signifies which game of Tic-Tac-

Toe we are looking at, and the column represents the turn number. The program starts in the top 

left of the board and moves down the column, then to the next column, looking for the first empty 

square to place a marker. So, the 1st row and column of the game tree matrix contains a 3x3 

matrix with all 0’s, and the 1st row and 2nd column contains a 3x3 matrix with a 1 in the top left 
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and 0’s in the rest of the matrix. Since the top left element of the matrix has already been filled, 

the program will now place a -1 in the top middle element for the next 3x3 matrix. This continues 

until there are three of the same marker in a row, column, or diagonal, or all nine elements of the 

matrix have been filled. Then the program looks at the second last turn of that game and chooses 

a different square for that turn’s marker. If all possible moves have been examined, the program 

will move back another turn. 

This program does not eliminate rotationally symmetric boards, so the number of 

branches in the game tree will be much larger than in the previous chapter. Now, there are 

255,168 end positions for the game, with 131,184 games where the first player wins and 123,984 

games where either the second player wins or the game ends in a tie. We can then create a 

program that uses the F and S positions from earlier to create a separate matrix containing the 

winning player for each of the positions, whether they are end positions or not. This matrix labels 

each game as 1 or -1, with 1 representing an F position and -1 representing an S position. This 

gives us a total of 549,946 positions, with 269,056 F positions and 280,890 S positions. We can 

then look at the beginning of the game and see that this is an S position, confirming the results of 

the reduced game tree. 

 

4.2.   Misère 

Since the program for solving the original game of Tic-Tac-Toe works, we can solve 

some of the variations of Tic-Tac-toe by editing the code from this program. For example, we can 

solve the winner of the Misère variation by making a few changes to the code. One of the 

alterations is, of course, switching the F and S positions of a game because a first player win now 

becomes a second player win. An even more important change, however, is that now a tie game 

cannot be considered a second player win. Since the first player advantage is no longer applicable 

to this game, the second player could have a winning strategy. So, we need to edit the code to 
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separate second player wins from draws. This means we must now create a third type of position. 

So, we now have F, S, and D positions. This does not change the definitions for F and S 

positions, so F positions are still positions where it is either the first player’s turn and he can 

move to an F position or it is the second player’s turn and he can only move to F positions. 

However, if the second player cannot move to an S position, but can move to a D position, and 

similarly if the first player cannot move to an F position, but can move to a D position, the 

position is a D position. Once we have done this, as well as a few minor other changes, we can 

see that there are still 549,946 positions, since we did not change the possible scenarios that can 

happen in the game, but the number of F and S positions has changed. Now, there are 103,160 F 

positions, 322,848 S positions, and 123,938 D positions. We can then check the winner at the 

start of the game and see that it is a “draw” position. This means that if both players understand 

the best strategies in Misère Tic-Tac-Toe, they will draw every time. 

Now that we know the winner of this variation, we need to analyze the game tree that the 

program gives us to see what strategy the players should follow. When we look at each of the 

nine positions for the first X, we can see that eight of these lead to S positions, while one leads to 

a draw. This drawing strategy is the middle square for the first move, which is very surprising 

because in order to both win and lose a game of Tic-Tac-Toe, the best first move does not 

change. After the first player takes the middle square, the player needs to use a mirror strategy. 

So, if the second player goes in the top right, the first player should move in the bottom left, and 

if the second player goes in the middle left, the first player should respond in the middle right. 

This strategy eliminates the possibility of getting three X’s in a row that include the middle 

square. Not only that, but it also stops the first player from getting a three in a row anywhere, 

because if there are three X’s in the bottom row, this means that there must have been three O’s 

in the top row the turn before this one, so the first player would have already won. 
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When the first player takes an edge or a corner square as the first move, the strategy for 

the second player to win is not as simple. There are three things the second player needs to avoid: 

letting the first player create a mirror strategy, blocking all of the first player’s losing squares, and 

losing the game. One of the best strategies for the second player to follow is to never take the 

middle square. It is still possible to win without doing so, but this limits the possibility of the first 

player preventing the second player from winning. Instead, the best first move is to take a square 

clockwise or counter-clockwise from the opposite square that the first player takes. So, if the first 

player goes in the top left square, the second player should respond in the middle right or bottom 

middle square. This is the best way to avoid those three mistakes. The reason the second player 

cannot go opposite the first player, is that the first player can then take the middle square and is 

now three moves into his mirror strategy. After this first move, the second player just needs to 

avoid the first and third mistake and try to avoid the second mistake as much as possible. 

 

4.3.   Veto Tic-Tac-Toe 

Another version of Tic-Tac-Toe that does not require too much change to the regular Tic-

Tac-Toe code is a variation called Veto Tic-Tac-Toe. In this variation, on each player’s turn, the 

opponent can veto one move. So, if the first player takes the middle square turn one, the second 

player can veto that move, and the first player now has to go in another empty square. Each 

player can veto up to once each turn. This changes which positions are labelled as F and S. 

Instead of requiring the first person to be able to move to one F position on his turn, he now 

needs to be able to move to two F positions in order for that position to be an F position, since the 

first F position can be vetoed. This also alters the end positions. If eight of the nine squares are 

filled up, the first player cannot move in the remaining spot, because it will be vetoed. Thus, 

draws are also a possibility in this variation as well. Since the way to win Tic-Tac-Toe has not 

been altered, we can still use the first player advantage to assume that if the game is not a first 
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player win, it is a draw game. So, we can once again lump second player wins and draws into the 

same category of S position. These are the only differences we need to look at while building the 

game tree. 

 MATLAB tells us that there are 422,074 positions, with 61,968 F positions and 360,106 

S positions. Just like the original game, the starting position is an S position. Once again, we can 

look at the matrix of winners to determine what strategies each player should employ. In regular 

Tic-Tac-Toe, in order for a player to win, that player must threaten at least two ways to get Tic-

Tac-Toe on his turn. For Veto Tic-Tac-Toe, the player now needs to threaten at least three ways 

to get Tic-Tac-Toe, which is much harder to do. This requires the first player to take the middle 

square, a corner square, and one of the edges adjacent to both of these squares, so that he 

threatens a diagonal, a row, and a column. This means that the second player needs to prevent the 

first player from taking the middle square until the first player is unable to create a position that 

threatens three wins. Since the second player will veto the first move if it is in the middle square, 

the first player now needs to take an edge or a corner square. In either case, the second player 

should take a square adjacent to the first move. If the first move was an edge, the first player can 

no longer create the structure needed to threaten three wins that contains his first move, so he 

needs to start over in a different part of the board. If the first move is a corner, the second player 

should veto the middle square again for the second turn. Now, the only way for the first player to 

create the winning structure is by taking the edge adjacent to his corner that is still empty. This 

means the first player has two X’s in a row. The first player now has the choice to either veto the 

middle square or veto the square that blocks his two X’s in a row. Either way, the structure can 

no longer threaten three ways to win, so the second player can force a tie. 
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4.4.   Notakto 

 Notakto is a variation of Veto Tic-Tac-Toe where both players use an X. This means that 

if the first player places two X’s in a row, and the second player places a third X to complete the 

row, this counts as the game ending, and the first player would win. This means we can use the 

same code as the Veto Tic-Tac-Toe code, with two differences. Instead of using 1’s to represent 

X’s and -1’s to represent O’s, we would only use 1’s, because both players use X. Also, ties are 

not possible in this version of Tic-Tac-Toe, because the board can never be completely filled with 

X’s without one of the players winning. This severely limits the number of possible board states. 

One of the reasons the number of board states decreases is because the game will always end by 

turn 7, since any time there are seven X’s on a 3x3 board, there is at least one row, column, or 

diagonal with three X’s. So, the game tree matrix for our MATLAB code is a matrix that is 23232 

by 8. 

  When we run the MATLAB program, we see that there are 34,560 positions. 23,952 of 

these positions are F-positions and 10,608 of these positions are S-positions. The program also 

tells us that the original board state is an 

F-position, so Notakto is a first player 

win game. Now, we must figure out 

what the winning strategy is. The first 

thing we can do is look at all the 

positions where any move causes the 

last person to move to lose. This is 

shown in Figure 4-1. 

So, there are six different positions 

where one more X will cause the game 

to end. This is important to look at 
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because the top and bottom row have an even number of X’s. This means the game will end with 

an odd number of X’s, which means the first player loses the game. In order for the first player to 

win the game, his strategy is to force the game to become one of the positions in the middle row. 

We can determine that the best move for the first player is the middle square, because this 

eliminates two of the three positions where the second player wins. Now the first player just 

needs to avoid creating a 2x2 square of X’s on the board. The best way for the first player to do 

this is by placing an X opposite to a square that is adjacent to the second player’s last move, 

similar to how a knight moves in chess. So, if the second player plays in the top right, the 

opposite adjacent squares are the bottom middle and middle left squares. This eliminates all of 

the ways for the second player to win, but we can also make the strategy simpler. After the first 

player takes the center square, if he responds with a “knight move” to 

each move the second player makes, while avoiding getting three X’s 

in a row, the first player can always force the game to look like 

Figure 4-2. While this strategy is not necessary to win on one board, 

Notakto is normally played on multiple boards. In order to play on 

multiple boards, we need to look at the new rules of the game. Each turn, the player can play on 

any of the boards, but once there are three X’s in a row, column, or diagonal on a board, neither 

player can play on that board. So, the last player to win the last board loses the game. 

  Now, we can look at Notakto on two boards. Since each individual game ends by turn 

seven, two games will end by turn fourteen, and since there are 23,232 branches in the individual 

games, we can square that number to get the number of branches for Notakto with two boards. 

This means the game tree matrix is 539,725,824 by 15. This is too large for MATLAB to handle, 

so we need to analyze this game without technology. One strategy that is common in Game 

Theory with multiple boards is the “copy-cat” strategy. With this strategy, wherever the first 

player plays, the second player responds in the same position on another board. However, in 
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Notakto with two boards, if the second player does this, the second player will win the last board, 

and lose the game. Instead, the second player can employ the copy-cat strategy until the first 

player creates one of the “end positions” that we looked at earlier. Once this happens, the second 

player should make three in a row on the other board, and the first player is forced to lose. This 

strategy works in most games, however if the first player’s first two moves are in opposite 

corners, the first player can end the board after the second player copies him. Now the first player 

can force the second player to win the remaining board, since the middle square is no longer 

available for the second player to take. This same problem arises when two of the first player’s 

first four moves are opposite corners. So, we must come up with a different strategy for the 

second player. 

  Since the middle square gives the first player control over one board, we can look at what 

happens when the second player tries to take the middle square on two boards. This means that 

whatever the first player chooses as his first move, the second player can respond in the middle 

square of the unused board. This means there are three cases: the first player’s first move was in a 

middle square, a corner square, or an edge square. If the first player’s move was in a middle 

square, this means wherever the first player goes for his second move, the second player can 

respond by winning that board. Now, we are left with one board with the middle square already 

taken. This means this game is now equivalent to a single board of Notakto where the second 

player moved first and took the middle square. So, if the first player’s first move is in the middle 

square, and the second player responds in the other middle square, this game is a second player 

win. If the first player instead takes a corner square as his first move and the second player takes 

the other middle square, there are a limited number of options for the first player’s next move. 

This first player cannot take a square in the same row or column as his first move, because the 

second player will win that board, and we will have the same situation as before. So, the first 
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player can either play in an adjacent edge or an opposite corner on the same 

board as his first move or he can play in the board that the second player has 

played. If he does the former, the second player can respond in either case to 

create the board position in Figure 4-3, which we will call the “Setup” board. 

Now, if the first player responds in this board again, the second player can end 

that board, so the first player is forced to play in the other board. Now, the second player can 

force the first player to win that board by using the knight move. If the first player at any point 

plays in the Setup board, the second player can win that game and use the knight move to force 

the first player to win that game. So, once the first player has won the other board, the second 

player can play in the top right corner of the Setup board, to force the first player to win the board 

in two moves. Thus, the second player will win that game. A similar scenario happens if the first 

player takes an edge square as his first move instead of the corner square, because his next move 

is limited to either of the opposite edges. Thus, the second player can create the Setup board 

again to win the game. Thus, if the second player responds in the middle square of the empty 

board for a game of Notakto with two boards, the second player can win the game. So, Notakto is 

a first player win with one board, and a second player win with two boards.  
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CHAPTER 5: Summary of Results 

  An original game of Tic-Tac-Toe has two players play on a 3x3 board, where the first 

player and second player take turns placing an “X” or “O” respectively on the board. The game 

ends either when one player wins by placing three markers in a row, either horizontally, 

vertically, or diagonally, or when all nine squares are filled, which causes a draw if nobody has 

already won. We used a game tree, which is a mapping of all the possible board positions in the 

game as well as which board positions lead to other board positions; as well as a system for 

labelling each position, to determine which player won the game. We created a game tree by 

manually by limiting the board positions we looked at by removing board positions that are 

symmetric and by limiting each player’s moves so they did not make a move that is clearly worse 

than another potential move. We also created a program through MATLAB that outputs the entire 

game tree. Both of these game trees were analyzed to show that Tic-Tac-Toe is a game where the 

second player could always force a tie. 

  Next, we looked at adding squares to the 3x3 board of Tic-Tac-Toe. The three additional 

squares we added are an extra side square, an extra corner square, and an extra corner side square. 

With each of these additional squares, the first player’s best first move was to play in the same 

row, column, or diagonal as the added square. When an extra side square is added, as well as 

when an extra side corner square is added, the first player was able to make the new square 

unusable, while turning the remaining 3x3 board into a position where the first player would win. 

However, adding an extra corner square did not affect the winner of the game. So, adding an 

extra side or corner side square created a first player win, while adding an extra corner square 

kept the outcome of the game as a draw. 

  Instead of just adding individual squares, we looked at how the game changes when we 

add entire rows and columns to the board. We were able to use a “pairing strategy” where for 

every move that the first player makes, there was a square on the board paired with that move that 
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the second player would place his marker in. To create a pairing strategy, we labelled two squares 

in every row, column, and main diagonal with the same number. This meant the pairing strategy 

blocked every row, column, and diagonal from the first player. This strategy worked for all 

square Tic-Tac-Toe boards that are 5x5 and bigger. However, when we looked at a 4x4 board, the 

same pairing strategy could not be employed. This was because a square board of size s x s must 

satisfy the following equation in order to create a pairing strategy: 

𝑠2 = 4𝑠 + 4 

Since a 4x4 board did not satisfy this equation, we had to create a modified pairing strategy. This 

modified strategy required the first player to make his first three moves and the second player to 

make a specific first two moves. We were then able to create ten pairing strategies that covered 

every option for the first player’s first three moves. So, as long as the second player followed the 

correct pairing strategy, he could force a tie in 4x4 Tic-Tac-Toe as well. 

  We also looked at the affect of adding a third dimension to Tic-Tac-Toe to create a 3x3x3 

board. With a third dimension, the number of ways to get three in a row increased significantly. 

In 3x3 Tic-Tac-Toe, there were eight ways to get three in a row, but in 3x3x3, there aere forty-

five ways to get three in a row. Since there were only twenty-seven squares in 3x3x3 Tic-Tac-

Toe, this means we could not use a pairing strategy. However, the only strategy the first player 

typically needed was to place a marker in the middle square during his first move. As long as he 

prevented the second player from winning and tried to get three markers in a row whenever 

possible, the first player was almost guaranteed a win. There was also a board game called Otrio 

where each player has three small, medium, and large circles. The winner of Otrio was the first 

player to get three circles of the same size in a row, column, or diagonal; all three sizes of circles 

in one square; or one of each sized circle in a row, column, or diagonal in either ascending or 

descending order. This was similar to 3x3x3 Tic-Tac-Toe, except we used the circles’ sizes to 
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represent the third dimension. Each player also had only three of each size circle, so the first 

player had to play with a specific strategy in order to win. The first player placed his medium 

circle in the middle square. Depending on the second player’s reaction, the first player’s winning 

strategy would change a bit, but the first player was able to win Otrio regardless of the second 

player’s moves. 

  The next Tic-Tac-Toe variation we looked at was Misére Tic-Tac-Toe, where the goal of 

this game was to force the other player to get three markers in a row. We used MATLAB 

program from 3x3 Tic-Tac-Toe by making some slight alterations to the code. The MATLAB 

program showed us that if the first player’s first move was in the middle square, the game would 

end in a draw, but if the first player’s first move was any other square, the second player would 

win. So, the first player’s strategy to draw was to take the middle square as his first move. After 

this, the first player responded in the opposite square of the second player every turn. This 

ensured that the first player does not get three markers in a row first. 

  Another variation we analyzed is Veto Tic-Tac-Toe. In this game, each turn, the 

opponent had the option to veto one move. If a player’s move was vetoed, that player chose 

another empty square in which to play. In normal Tic-Tac-Toe, a player was required to threaten 

two ways of getting three markers in a row to win, but in this variation, the player had to threaten 

three ways of getting three markers in a row. We changed the MATLAB program to analyze this 

game, and this told us that the game always ended in a draw. This was because in order to set up 

three threats on the board, this required the middle square and two other squares. Since the 

second player’s best strategy prevented the first player from playing in the middle square for the 

first few turns and stopped the first player’s setup during those first three turns as well, the first 

player was not able to set up three threats on the board successfully. 

  The last variation we looked at was Notakto. In this game, both players used an “X” as 

their markers, and the game was played on any finite number of boards. Once a board had three 
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X’s in a row on it, the board could not be used anymore. The player who finished a row, column, 

or diagonal of three X’s on the final board loses. We altered the MATLAB code again, and the 

program told us that this game was a first player win. The strategy behind this stemmed from the 

fact that there were only six ways for the board to end as long as neither player got three markers 

in a row before it was unavoidable. Three of these positions resulted in the second player 

winning, and three of them resulted in the first player winning. The first player avoided the three 

“second player win positions” by placing his first X in the middle square, and then responded in 

the square that is opposite to a square adjacent to every move that the second player made. This 

was similar to how a knight moves in Chess. This resulted in a first player win. 

  We then extended this information to a game of Notakto with two boards. One strategy 

that the second player employed was to place his first marker in the middle square of the empty 

board. This allowed the second player to set up that board either as a first player win or as a board 

he could sacrifice. The second player then used knight moves to force the first player to either get 

three in a row on both boards, or the second player “sacrificed” a board in order to force the first 

player to win the final board, depending on the first player’s responses. Thus, Notakto with two 

boards was a second player win game. 
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CHAPTER 6: Future Work 

 The last variation of Tic-Tac-Toe we looked at was Notakto. This game could be played 

on any finite number of boards, but during this research I only looked at playing on one or two 

boards. Since the game tree for two boards was too large for MATLAB to handle, the game tree 

for three boards will also most likely be too large for MATLAB to handle. If I were to continue 

analyzing Notakto with more boards, the two options I would pursue are to either use the 

information from the one and two board strategies and try to find patterns within them that could 

help with a strategy for three boards or decrease the size of the game tree the MATLAB program 

needs to create, like I did in Section 2.1 for 3x3 Tic-Tac-Toe. Reducing the game tree makes the 

number of first moves we need to look at decrease from twenty-seven to three, since it does not 

matter which board the first player’s first marker is placed. However, the MATLAB program 

would need to be adjusted a lot in order to remove symmetric boards, and once I look at more 

than three boards, the reduced matrix will eventually be too large for MATLAB, so I would start 

with the first approach. 

Another variation that I never analyzed in the paper was Tic-Tac-Toe Forget. In this 

variation, each marker disappears after it is on the board for three turns. After playing this 

variation for months, I have made an assumption that the game will result in neither player 

winning or losing if both players play optimally, so my analysis of the game will start with that 

assumption, until I am either proven right or the assumption breaks. Once again, I have two ways 

to approach finding the winning player and strategy. The first option is to find every possible 

arrangement of three X’s and three O’s where neither player can win within the next turn. If both 

players can prevent the other player from winning, this means that there are multiple cycles of 

these positions of three X’s and O’s where either player can force the game to continue 

indefinitely through these cycles while avoiding any other positions. There are a lot of positions 

with three X’s and three O’s though, especially considering that the order each marker was 
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played is considered a different position, so this next approach would most likely be what I use to 

find the winner. Due to the game’s rules, there are a very limited number of ways in order for a 

player to win. In order to win, the winner must have two markers surrounding one of the loser’s 

markers, and the loser’s marker must disappear this turn, while the winner’s two markers cannot 

disappear this turn. I would start by marking down these positions and seeing what circumstances 

must arise in order for these positions to be possible. Assuming both players can prevent the other 

player from winning, this means there must be some contradiction among those circumstances for 

each position. 
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APPENDIX 

The following is the MATLAB code for the game of Tic-Tac-Toe. 

clear; 

clc; 

T{255169,10}=[]; 

W=zeros(255168,10); 

M0=[0,0,0;0,0,0;0,0,0]; 

M{1,1}=[1,0,0;0,0,0;0,0,0]; 

M{2,1}=[0,0,0;1,0,0;0,0,0]; 

M{3,1}=[0,0,0;0,0,0;1,0,0]; 

M{1,2}=[0,1,0;0,0,0;0,0,0]; 

M{2,2}=[0,0,0;0,1,0;0,0,0]; 

M{3,2}=[0,0,0;0,0,0;0,1,0]; 

M{1,3}=[0,0,1;0,0,0;0,0,0]; 

M{2,3}=[0,0,0;0,0,1;0,0,0]; 

M{3,3}=[0,0,0;0,0,0;0,0,1]; 

  

n=1;t=1; 

T{n,t}=M0; 

  

for t1=1:9 

i=t1;j=1; 

    while i>3, i=i-3;j=j+1; 

    end 

    t=t+1; 

    T{n,t}=M{i,j}; 

for t2=1:9 

i=t2;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

    if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

    end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}-M{i,j}; 

    for t3=1:9 

i=t3;j=1;t4=0;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}+M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 
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                if abs(c(1,1:3))~=3 

  

         

        % Turn 4 

        for t4=1:9 

i=t4;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}-M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

         

        % turn 5 

            for t5=1:9 

i=t5;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}+M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

         

        % turn 6 

            for t6=1:9 

i=t6;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 
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    T{n,t}=T{n-a,t-1}-M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

         

        % turn 7 

            for t7=1:9 

i=t7;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}+M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

         

        % turn 8 

            for t8=1:9 

i=t8;j=1;a=0; 

    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}-M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

         

        % turn 9 

            for t9=1:9 

i=t9;j=1;a=0; 
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    while i>3, i=i-3;j=j+1; 

    end 

        if numel(T{n-a,t})==0 

        while numel(T{n-a,t})==0 

        a=a+1; 

        end 

        end 

    if T{n-a,t}(i,j)==0 

    t=t+1; 

    T{n,t}=T{n-a,t-1}+M{i,j}; 

    d1=0;d2=0;c=sum(T{n,t});r=sum(T{n,t},2)'; 

    for x=1:3 

        d1=d1+T{n,t}(x,x); 

        d2=d2+T{n,t}(x,4-x); 

    end 

  

    if abs(d1)~=3 

        if abs(d2)~=3 

            if abs(r(1,1:3))~=3 

                if abs(c(1,1:3))~=3 

                    W(n,t)=-1; n=n+1; t=t-1; 

                else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t9==9 

    t=t-1; 

end 

            end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 
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                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t8==9 

    t=t-1; 

end 

            end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t7==9 

    t=t-1; 

end 

            end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 
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            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t6==9 

    t=t-1; 

end 

            end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t5==9 

    t=t-1; 

end 

            end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 
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    end 

    end 

if t4==9 

    t=t-1; 

end 

        end 

else 

                    for x=1:3 

                        if abs(c(1,x))==3 

                            W(n,t)=c(1,x)/3; 

                            n=n+1;t=t-1; 

                        end 

                    end 

                end 

            else 

                for x=1:3 

                if abs(r(1,x))==3 

                 W(n,t)=r(1,x)/3; 

                 n=n+1;t=t-1; 

                end 

                end 

            end 

        elseif abs(d2)==3 

            W(n,t)=d2/3; 

            n=n+1; t=t-1; 

        end 

    elseif abs(d1)==3 

        W(n,t)=d1/3; 

        n=n+1; t=t-1; 

    end 

    end 

if t3==9 

    t=t-1; 

end 

    end 

    end 

if t2==9 

    t=t-1; 

end 

end 

end 

  

TT{255168,10}=0; 

for x=1:255168 

    for y=1:10 

        if numel(T{x,y})==9 

            TT{x,y}=T{x,y}; 

        end 

    end 

end 

  

  

for t=10-(0:8) 

    nn=n-1; 

    while nn>1 

        c=1;V=zeros(1,9); 

        while numel(TT{nn,t-1})==0 

            if numel(TT{nn,t})==9 

                V(1,c)=W(nn,t); 

                c=c+1; 

            end 

            nn=nn-1; 

        end 
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        V(1,c)=W(nn,t); 

        if mod(t,2)==0 && sum(V(:)==1)>0 

            W(nn,t-1)=1; 

        elseif mod(t,2)==0 && sum(V(:)==1)==0 

            W(nn,t-1)=-1; 

        elseif mod(t,2)==1 && sum(V(:)==-1)>0 

            W(nn,t-1)=-1; 

        elseif mod(t,2)==1 && sum(V(:)==-1)==0 

            W(nn,t-1)=1; 

        end 

        nn=nn-1; 

    end 

end 
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