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ABSTRACT 
 

Vertex Perfect Graphs 
 

By 

Riley Littlefield 

May 2015 
 

Advisor:  Erich Friedman 
Department:  Mathematics and Computer Science 
 

We explore a generalization of perfect numbers to connected graphs. 

Specifically, this paper defines vertex perfect graphs and investigates how these 

new objects are similar to and differ from their number theoretic counterparts. 

 The main results of this paper outline some of the basic properties of vertex 

perfect graphs in addition to producing tools useful for finding them. We prove that 

there are infinitely many vertex perfect graphs, and for most positive integer              

n < 100, we determine whether a vertex perfect graph of order n exists. 

 We additionally investigate the properties of vertex perfect trees. Focusing 

on the properties of their vertex divisors, we prove theorems that dictate the 

structure of these minimally connected graphs. 

Finally, we further generalize this topic and define amicable graphs, new 

objects in graph theory that correspond to amicable pairs in number theory. We 

conclude by extending previous results on vertex perfect graphs to amicable graphs. 
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Chapter 1 
Intro to Vertex Perfect Graphs 

 

1.0  Introduction to Number Theory and Graph Theory 
 
 This section is a summary of fundamental concepts necessary for 

understanding the results stated later in this paper, namely perfect numbers and 

simple graphs. If the reader is already familiar with both of these topics, skipping 

this section is possible. 

 In number theory, a divisor q of a positive integer p is any number that 

satisfies 𝑝 𝑞⁄ ∈ ℤ+. A proper divisor of p is any divisor of p that is less than p. If the 

sum of the proper divisors of p is less than p, we say that p is deficient. If the proper 

divisors of p sum to an integer greater than p, then p is said to be abundant. When p 

is the sum of its proper divisors, p is called perfect.  

 The number 6 is an example of a perfect number since 1, 2, and 3 sum to 6. 

28 is also perfect as 1, 2, 4, 7, and 14 add to 28.  An example of an abundant number 

is 12 since its proper divisors sum to 16, and any prime number is deficient as the 

only proper divisor of a prime is one.  

 We will now review some fundamental topics from the field of graph theory. 

In graph theory, a graph G consists of two sets: one of vertices and one of edges. 

Each edge connects a pair of vertices. If two vertices share an edge, they are said to 

be adjacent. The total number of vertices and edges of G are respectively referred to 

as G’s order and size. The order of G is denoted by |𝐺| while the size of G is denoted 

by |𝐸𝐺|. If in G no two vertices share multiple edges and no edges connect a vertex to 

itself, then G is said to be a simple graph. 
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All graphs can be visualized as a set of points (vertices) with lines connecting 

each point (edges). Take the following figure as an example: if we call the graph in 

the image G, then we can say that G is a simple graph with |𝐺| = 4 and |𝐸𝐺| = 5. The 

vertex 𝑣1 is adjacent to all of the other vertices that compose G.    

 
Figure 1. An example of a representation of a graph.  

 
 A path is an ordered listing of vertices of a graph G such that any vertex may 

only be included once and one vertex may only follow another if both are adjacent. 

An example of a path on the vertices of the graph in figure one could include v1, v3, 

and v2. 

 A subgraph H of a graph G is a subset of vertices and edges from G. Any edge 

of G may be included in H as long as both of its corresponding vertices are included 

in H. A component of a graph G is any subgraph that includes any collection of 

vertices (and all of their corresponding edges) that can be joined together by a path. 

If a path cannot join two vertices in G, then those two vertices are said to be in 

separate components of G.  If G has only one component, G is said to be connected. A 

spanning subgraph of a connected graph G is any subgraph that retains all of the 

vertices of G and is still connected.  

 As an example, the following figure 2 has 2 components, one formed by the 

labeled vertices 1 through 13, and one formed by the labeled vertices 14 through 18. 

v1 v2

v3v4
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The subgraph of vertices labeled from 10 to 13 form a special type of graph called a 

path graph, a graph that is simply a path on n vertices (denoted by 𝑃𝑛). The 

subgraph formed by the set of vertices labeled 1 through 8 and all of their shared 

edges is also a special type of graph called a cycle. A cycle with order n is a path 

graph with the first and final vertex joined by an edge and (denoted 𝐶𝑛). The 

subgraph of vertices 1 through 9 and all of their shared edges is a wheel graph 

(denoted by 𝑊𝑛), a cycle in which all vertices are adjacent to some additional vertex.  

The vertices 14 through 18 and their shared edges form a complete graph, a graph 

in which every vertex is adjacent to every other vertex in the graph (denoted Kn). 

Finally, any connected subgraph of G that does not contain a cycle is a called tree. 

 
Figure 2. A graph with multiple components. 

 
 There are a number of operations that can be performed to alter a graph. The 

operation of edge deletion removes an edge between two vertices. The operation of 

vertex deletion deletes a vertex and any edge that it shares with another vertex. 

Edge Contraction erases a given edge and the pair of vertices that it connects, 

replacing them with a new vertex that is adjacent to all of the vertices that the 

previously pair were adjacent to. See the figure below for examples of these three 

operations.  

v1

v2

v3

v5

v4

v8 v6

v7

v9 v10 v11 v12 v13 v14 v16

v15

v18 v17
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Figure 3a. An example of deleting an edge e1 from a connected graph. 

 

 
Figure 3b. An example of deleting a vertex v1. 

 
 

 
Figure 3c. An example of contracting an edge e2. 

 
 Some final definitions concerning vertices are in order. The degree of a 

vertex v is the number of vertices that v is adjacent to in a simple graph. This is not 

the actual definition of the degree of a vertex in general, but because we will only be 

dealing with simple graphs in this paper, we stick to our less precise definition. The 

maximum and minimum degrees of a graph G are defined intuitively and are 

denoted as ∆(𝐺) and 𝛿(𝐺), respectively. Revisiting figure 2, we can see that 

∆(𝐺) = 8, which corresponds to the degree of vertex 9. 𝛿(𝐺) = 1, and this degree 

corresponds to the vertex 13. 

 A cut vertex is any vertex that when deleted increases the number of 

components of a graph. The analog of a cut vertex in terms of edges is a bridge, 

which is any edge that when deleted increases the number of components of a 

e1

v1

e2



 10 

graph.  In figure 2, vertex 5 is a cut vertex and the edge that connects vertex 5 and 

vertex 10 is a bridge.  

From this point on in the paper, it can be assumed that when we use the term 

graph, we are discussing simple graphs. 

 

1.1 Vertex Perfect Graphs 
 
 The main focus of this research project concerns a generalization of perfect 

numbers to graphs. Specifically, the idea of a perfect number has been mapped to 

simple, connected graphs to form an analog with similar properties. We call these 

analogs vertex perfect graphs (VPG). To define VPGs, we will first need to generalize 

addition and division to simple, connected graphs.  

 We generalize addition by defining a new operation called graph 

covering. If a set of connected graphs {𝐻1, 𝐻2, … , 𝐻𝑛} = 𝑆 can have edges added 

between them (including possibly adding edges between two vertices in the same 

Hi)  to produce a new connected graph G, then we say that G is covered by S. 

Similarly, if a connected graph G can have edges removed to produce S, G is covered 

by S. The following figure serves as an example of graph covering. The set S of three 

connected graphs seen in the left of the image covers the graph G seen at the right. 

 
 

 Figure 4. An illustration of a set S of graphs that cover G.  
 

S G
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 We now generalize division by defining a vertex divisor. If H and G are 

connected graphs, we say that H is a vertex divisor of G (or, for brevity, H is a 

divisor of G) if edges of G can be removed to yield 𝑛 ≥ 2 isomorphic copies of H. In 

other words, if G can be divided into n separate components of strictly H by edge 

deletion, then H is a divisor of G. The next figure illustrates how the graph H is a 

divisor of the three graphs that follow it. 

 

 
 

 

 

 
Figure 5. H as the divisor of various other graphs.  

 
  

We are now ready to present the definition of a VPG. If a graph G is covered 

by the exhaustive set of its divisors, then G is vertex perfect. As an example, the 

H
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following two path graphs on “familiar” orders (6 and 28, both perfect numbers) are 

shown with their perfect coverings.  

𝑃6 

 
𝑃28

 
Figure 6. P6 and P28. 

 
 As the above figure suggests, there is a correspondence between paths with 

perfect orders being vertex perfect as well as the divisors of such graphs mapping to 

the proper divisors of perfect numbers. Other vertex perfect graphs also share 

similar relations that directly mirror their number theoretic counterparts (see table 

1 for more examples of vertex perfect graphs in general). There are however vertex 

perfect graphs that do not have analogs in number theory. For example, take the 

following graph shown with its perfect covering: 

 

 
Figure 7. A vertex perfect graph on 12 vertices.  

 
As a result of its edge structure, the graph of figure 7 has an order that is not a 

perfect number yet its vertex divisors are able to cover it. From this example we can 

intuitively grasp that VPGs might mimic the behavior of perfect numbers in some 

contexts while manifesting different behaviors based on the varying structures of 
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connected graphs in other contexts. Investigating both these differences and 

similarities between vertex perfect graphs and perfect numbers is the subject of the 

rest of this paper. 

 

1.2 Basic Properties of Vertex Perfect Graphs 
 

What properties do VPGs have with respect to their vertex divisors? In this 

section, we begin to answer this question by proving theorems on connected graphs 

in general (of which VPGs are a subset) and by proving theorems specifically limited 

to VPGs. 

As can be intuitively imagined, every connected graph is just the sum of 

many individual vertices joined together by edges. The following theorem 

formalizes this idea by stating that 𝐾1 (the connected graph of order 1, or a graph on 

a single vertex) is the divisor of any graph excluding itself. 

Theorem 1: 𝐾1 is a divisor of all connected graphs except for itself.  

Proof: Take any connected graph G such that |𝐺| ≥ 2 and erase all of its edges. What 

remains are |𝐺| copies of 𝐾1. Hence, 𝐾1 covers G.  

Now suppose G is a connected graph such that |𝐺| = 1. G must be K1. Clearly 

we cannot remove some number of edges from K1 to produce 𝑛 ≥ 2 copies of a new, 

connected graph. It follows that K1 is not a vertex divisor of itself. ∎ 

 Because 𝐾1 is a divisor of any graph, we can expect to find it in the perfect 

covering of every VPG. Furthermore, because we usually do not know much about 

the edge structure of graphs when trying to prove general results, 𝐾1 is usually the 

only guaranteed divisor of a graph.  
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 The next result relates the order of a connected graph to the orders of its 

divisors in a way similar to how positive integer relate to their proper divisors. Here 

is the theorem: 

Theorem 2: If H is a vertex divisor of G, then |𝐻| properly divides |𝐺|. 

Proof: Suppose H is a divisor of G. Some of the edges of G can then be removed to 

produce a new graph consisting of 𝑛 ≥ 2 copies of H. The sum of the orders of the n 

copies of H must add to |𝐺| since no vertices are removed from G in this process. We 

then have 𝑛|𝐻| = |𝐺| , or  𝑛 =
|𝐺|

|𝐻|
, which implies that |𝐻| must properly divide |𝐺|. ∎ 

 The following corollary gives an upper bound on the order of a vertex divisor 

of a graph.  

Corollary (2): If H is a vertex divisor of G, then 2|𝐻| ≤ |𝐺|. 

Proof: Suppose that H is a divisor of G such that 2|𝐻| > |𝐺| and 𝑛 ≥ 2 is the number 

of copies of H that cover G. We then have 

𝑛 =
|𝐺|

|𝐻|
<

2|𝐻|

|𝐻|
= 2, 

which is a contradiction since 𝑛 ≥ 2.  ∎ 

 The next theorem fittingly rounds out our knowledge of what can be known 

about a vertex perfect graph without any specific knowledge about it.  

Theorem 3: If G is vertex perfect, then the orders of its divisors must add to |𝐺|. 

Proof: Suppose G is vertex perfect with order |𝐺|. Let 𝑁1, 𝑁2, … , 𝑁𝑞 be the various 

vertex divisors of G with corresponding orders |𝑁1|, |𝑁2|, … , |𝑁𝑞|. Because G is vertex 

perfect, its edges can be removed such that q components remain, each being a 

different divisor of G, (i.e. G has a perfect covering). Because no vertices are 
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removed from the original copy of G when producing its perfect covering, there are 

|𝐺| vertices remaining in this new graph. We can conclude that the sum of the 

orders of each component is |𝐺|. ∎ 

 To summarize our list of results thus far, if G is vertex perfect, then it has 𝐾1 

as a divisor, the orders of its divisors divide |𝐺|, and those orders sum to |𝐺|. The 

next section will make use of these three pieces of information to produce a 

powerful tool that “screens” graph orders for VPGs.  

We now close this section with a final result concerning vertex divisors. It 

states that if some graph is a divisor of another graph, then any spanning graph of 

that divisor must also be a divisor of that graph. This highlights an important 

difference between positive integers and connected graphs: the latter can have 

multiple divisors of the same order. 

 Theorem 4: If 𝐻1is a divisor of G and 𝐻2 is a spanning subgraph of 𝐻1, then 𝐻2 is a 

divisor of G.  

Proof: Let 𝐻1 be a divisor of G and 𝐻2 be a spanning subgraph of 𝐻1. Because some 

𝑛 ≥ 2 copies of 𝐻1 can be produced from G by only deleting G’s edges and 𝐻2 can 

also be produced from 𝐻1 by also deleting some number of H1’s edges, it follows that 

𝐻2 also covers G. ∎ 

 



 16 

 
Figure 8. If H1 is a divisor of a graph G, then H2 and H3 are also divisors of G. 

 

1.3 Tools for Searching for Vertex Perfect Graphs 
 
 When looking for an object of interest, it is sometimes useful to know where 

not to look. The theorems developed in this section provide this information with 

respect to the orders of VPGs and also give information about the make up of their 

vertex divisors. The next and most important result of this category is informally 

known as the Divisor Sieve, which we now present for the reader.  

Theorem 5 (The Divisor Sieve): Let G be a vertex perfect graph. If 𝑞1, 𝑞2 … , 𝑞𝑛 are 

all of the proper divisors of |𝐺| (besides 1) and 𝑚𝑖 is the number of different graphs 

of order 𝑞𝑖 that are vertex divisors of G, then the following equation must hold: 

1 + 𝑚1𝑞1 + 𝑚2𝑞2 + ⋯ + 𝑚𝑛𝑞𝑛 = |𝐺|. 

Proof: Let G be vertex perfect. By Theorem 3, the sum of the orders of G’s divisors 

must add to |𝐺|. By Theorem 2, the orders of G’s divisors must be proper divisors of 

|𝐺|. By Theorem 1, 𝐾1 is guaranteed as a divisor of G. Hence, the above equation 

holds. ∎ 

 To illustrate the usefulness of the divisor sieve, we begin by providing an 

example of how it can be used to show that there are no VPGs of a specific order. By 

the contrapositive of the divisor sieve, if the above equation does not hold, then a 

H1 H2 H3
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graph G is not vertex perfect. Also, the values that each 𝑚𝑖 can take on ranges from 0 

to the minimum of |𝐺|/qi −1 and the number of different connected graphs of order 

𝑞𝑖 (we leave it to the reader to verify this claim). Combining both of these facts 

allows us to demonstrate the following example that states there are no VPG’s with 

order 14. 

Example 6: If |𝐺| = 14, then G is not vertex perfect.  

By theorem 5, if a graph G with |𝐺| = 14 is vertex perfect, the following equation 

must hold: 

1 + 2𝑛 + 7𝑚 = 14, 

where n is the number of divisors of order 2 and m is the number of divisors of 

order 7. This equation is only solved for the nonnegative integers n and m when 

𝑛 = 3 and 𝑚 = 1. Because there is only one connected graph on two vertices (P2), G 

is not vertex perfect. ∎ 

 The Divisor Sieve can also be used in a more general sense to show that there 

are an infinitely many orders for which there are no corresponding VPGs. 

Theorem 7: If |𝐺| is prime, then G is not vertex perfect. 

Proof: Let |𝐺| be prime. Since all positive integers less than |𝐺| are relatively prime 

to |𝐺| besides one, the divisor sieve gives 1 = |𝐺|, which will never be true. ∎ 

 Theorem 7 can be generalized into a theorem that states there are no VPGs 

with orders that are powers of primes. Additionally, we can also mark off graphs 

with orders that are certain kinds of products of primes from being vertex perfect. 

These two theorems are as follows: 
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Theorem 8: Let p a prime number. If |𝐺| = 𝑝𝑛 for integer n, then G is not vertex 

perfect.   

Proof: Let G be a graph with |𝐺| = 𝑝𝑛 and suppose that G is vertex perfect. By the 

Divisor Sieve, the following equation must hold 

1 + 𝑚1𝑝1 + 𝑚2𝑝2 + ⋯ + 𝑚𝑛−1𝑝𝑛−1 = 𝑝𝑛 

We can see that all of the above terms in the sum on the left side of the equation are 

divisible by p except for 1, which is a contradiction since the right side of the above 

equation is divisible by p. ∎ 

Theorem 9: Let G be a graph with order that is the product of two primes p, q such 

that  𝑝 < 𝑞. Let 𝑐𝑝 be the total number of non-isomorphic, connected graphs on p 

vertices. If 1 + 𝑝𝑐𝑝 < 𝑞, then G is not vertex perfect.  

Proof: Let G be a graph with |𝐺| = 𝑝𝑞 and let 1 + 𝑝𝑐𝑝 < 𝑞. If G is vertex perfect, then 

it must satisfy the divisor sieve, which yields 

1 + 𝑝𝑚𝑝 + 𝑞𝑚𝑞 = 𝑝𝑞 

where 𝑚𝑝 and 𝑚𝑞 are the number of different graphs of order p and q respectively 

that are vertex divisors of G. We know that 𝑐𝑝 ≥ 𝑚𝑝, which implies that 

1 + 𝑝𝑐𝑝 ≥ 1 + 𝑝𝑚𝑝. Also, because 𝑞𝑚𝑞 must be smaller than 𝑝𝑞 − 1, 𝑚𝑞  must be no 

greater than 𝑝 − 1, which gives 

𝑚𝑞 ≤  𝑝 − 1 

1 ≤ 𝑝 − 𝑚𝑞 

𝑞 ≤ 𝑞(𝑝 − 𝑚𝑞) 

We can then take all of these results to produce the following contradiction: 
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1 + 𝑝𝑐𝑝 ≥ 1 + 𝑝𝑚𝑝 = 𝑝𝑞 − 𝑞𝑚𝑞 ≥ 𝑞     ∎ 

 To illustrate the usefulness of theorem 9, see the following example that 

demonstrates that there are no vertex perfect graphs of order 26: 

Example 10: There are no vertex perfect graphs of order 26. 

Proof: The number 26 is the product of 2 and 13 and there is only one connected 

graph on 2 vertices. 1 + 2 < 13, so by theorem 9, there are no vertex perfect graphs 

of order 26. ∎  

 The Divisor Sieve can also produces positive results; It can find all of the 

possible combinations of vertex divisors that a VPG can have for a specific order. For 

example, if G is a graph with order 21, it must satisfy the divisor sieve, which gives 

the following equation: 

1 + 3𝑚2 + 7𝑚7 = 21, 

 

where m2 is the number of divisors of order 3 and m7 is the number of divisors of 

order 7. The only solution to the above equation for 𝑚2 and 𝑚7 on their respective, 

allowed intervals is 2 and 2. This implies that if a VPG with order 21 exists, its set of 

divisors must include 𝐾1, two graphs of order 3 and two graphs of order 7.  

As an aside, it is important to note that just because there is a solution to the 

Divisor Sieve for a specific order, there may not necessarily exist a vertex perfect 

graph that corresponds to that order. 

 We now close this section with another tool for narrowing down the list of 

divisors of vertex perfect graphs. Its use is much more limited than that of the 
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previously discussed results, but it gives a defining trait of the divisors of graphs 

with respect to their degree sequences.    

Theorem 11: If 𝛿(𝐻) > 𝛿(𝐺) or if ∆(𝐻) > ∆(𝐺), then H is not a divisor of G. 

Proof: Suppose 𝛿(𝐻) > 𝛿(𝐺). If H is a divisor G, then the degree sequence of H must 

be exactly the same as each of the components of H produced from G by edge 

deletion. Because edges deletion will not cause the terms of G’s degree sequence to 

increase, we can see that this will never be true.  

Similarly, if ∆(𝐻) > ∆(𝐺), we can see that edge deletion performed on G 

cannot form a component with greater degree than  ∆(𝐺). Hence, H cannot be a 

divisor of G. ∎ 
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Chapter 2  
Perfect Paths and Graph Generation 

 

2.1 Perfect Paths and Other Familiar Graphs 
 
 In this section, we prove theorems that state when certain types of 

graphs are vertex perfect. The most important of these concern paths. Knowing 

when paths are vertex perfect is useful for showing when other types of graphs are 

vertex perfect. Additionally, results on paths are useful in demonstrating other 

properties of vertex perfect graphs featured later in this chapter. We now begin by 

proving a lemma necessary our classification of when paths are vertex perfect.  

Lemma 12: The vertex divisors of 𝑃𝑛 are all paths with orders that properly divide 

n. 

Proof: Let 𝑃𝑛 be a path on 𝑛 ≥ 2 vertices. Deleting any edge in 𝑃𝑛 produces a new 

graph on two, unconnected paths. This implies that the only graphs that can 

produced from paths by edge deletion are collections of unconnected paths. It 

follows from this fact and theorem 2 that the only graphs that can possibly be vertex 

divisors of 𝑃𝑛 are paths whose order properly divides n. 

Now let m be a proper divisor of n. It is trivial to demonstrate that 𝑃𝑛 can be 

divided into 𝑛 𝑚⁄  components of 𝑃𝑚 by edge deletion. We can thus conclude that the 

vertex divisors of 𝑃𝑛 must then be all paths whose order divides n.  ∎ 

 With help from the above lemma, we can demonstrate a direct link between 

perfect numbers and perfect paths. 

Theorem 13 (The Perfect Path Theorem): 𝑃𝑛 is vertex perfect if and only if n is 

perfect. 
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Proof: Let 𝑃𝑛 be a path of order n. Two cases arise: n is either perfect or not perfect. 

If n is not perfect, then by Lemma 1, the sum of the order of the divisors must be 

greater or less than n, implying that 𝑃𝑛 does not satisfy the divisor sieve and cannot 

be vertex perfect. If n is perfect, then by Lemma 1, the sum of the orders of the 

divisors of 𝑃𝑛 is n and the divisors of 𝑃𝑛 are all paths whose order properly divides n. 

If we choose one of the “end vertices” in 𝑃𝑛 and let 𝑃1 cover the first vertex of 𝑃𝑛, let 

the next m vertices where m is the second smallest proper divisor of n be covered by 

𝑃𝑚, and repeat this process until we have exhausted all of the divisors of 𝑃𝑛, we can 

see that 𝑃𝑛 is covered by its vertex divisors. This implies that 𝑃𝑛 has a perfect 

covering when n is a perfect number, which completes the proof. ∎ 

 We can also prove a similar result for cycles and paths. This is because both 

the structure of cycles and wheel graphs are very similar to that of a path. The proof 

of these statements are featured below: 

Theorem 14: The cycle graph 𝐶𝑛 is vertex perfect if and only if n is perfect.  

Proof: Assume 𝐶𝑛 is vertex perfect. If we delete any one edge in 𝐶𝑛, the resulting 

graph is 𝑃𝑛. This implies that 𝐶𝑛 shares all of the divisors of 𝑃𝑛, (all paths with orders 

that divide n).  Because the only possible divisors of 𝐶𝑛 are paths whose order 

divides n, the divisors of 𝐶𝑛 and 𝑃𝑛 are the same. It follows that 𝐶𝑛 will only be vertex 

perfect when 𝑃𝑛 is vertex perfect, implying that n is a perfect number when 𝐶𝑛 is 

vertex perfect.  

Now assume that n is perfect. As shown earlier, the divisors of 𝐶𝑛 are all 

paths with order that divide n. Clearly any set of paths whose orders sum to n will 

cover 𝐶𝑛, so 𝐶𝑛 must be vertex perfect if n is perfect. ∎ 
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Theorem 15: The wheel graph 𝑊𝑛 is vertex perfect if and only if n is perfect. 

Proof: Let 𝑊𝑛 be the wheel graph pictured in the following figure: 

 
 

 
Figure 9. A general wheel graph. 

 
Let H be a divisor of 𝑊𝑛 with |𝐻| > 1. Choose the center vertex 𝑣𝑛 to be in one of the 

𝑛

|𝐻|
 copies of H that 𝑊𝑛 can be divided into by edge deletion.  Two cases arise: either 

|𝐻| = 2 or |𝐻| > 2. If |𝐻| = 2, then H is 𝑃2. If |𝐻| > 2, then the copy of H that 

contains 𝑣𝑛 must also contain at least two other vertices in the “outer wheel” of 𝑊𝑛. 

This copy cannot contain all of the vertices on the “wheel” if |𝐻| is to properly divide 

n. This implies that if we use edge deletion to separate just the 𝑣𝑛 containing copy of 

H from 𝑊𝑛, for some two vertices on the wheel of 𝑊𝑛, WLOG 𝑣1 and 𝑣𝑚, the 

remaining 𝑣2 through 𝑣𝑚−1 vertices are then separated into a new component. This 

new component is a path on 𝑚 − 2 vertices. Because the divisors of paths are only 

other paths, H must then be a path, which suggests that in either of the two 

mentioned previous cases, the divisors of 𝑊𝑛 must all be paths. If we delete all of the 
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edges incident with 𝑣𝑛 except for the edge shared between 𝑣𝑛 and 𝑣1 in addition to 

the edge shared by 𝑣𝑛−1 and 𝑣1, we can see that 𝑊𝑛 has 𝑃𝑛 as a subgraph and that the 

divisors of 𝑊𝑛 must be all paths whose order divides n. 𝑊𝑛 will then only be vertex 

perfect when n is perfect, since this is the only instance for which the order of the 

divisors of 𝑊𝑛 will sum to n. If n is perfect, then all of the orders of the divisors of 𝑊𝑛 

sum to n. Producing the corresponding perfect covering of 𝑊𝑛 is trivial. ∎ 

 This gives three different theorems that state when certain related graphs 

are vertex perfect. The next and final theorem of this section is a negative result 

about another familiar class of graphs and when they are vertex perfect. 

Theorem 16: Complete Graphs are not vertex perfect. 

Proof: Let 𝐾𝑛 be a complete graph with |𝐾𝑛| = 𝑛. Because it is complete, every 

vertex of 𝐾𝑛 must be adjacent to every other vertex. This implies that the divisors of 

𝐾𝑛 include any connected graph of order that divides n. Two cases arise; either the 

highest order divisor of 𝐾𝑛 is at least four or is less than four. If the order of the 

highest order divisor (HOD) of 𝐾𝑛 is less than four, then the HOD has order that is 

either one, two, or three. If the order of the HOD is one, then n is prime and 𝐾𝑛 is not 

vertex perfect. If the order of the HOD is two, then either n is two or four, which 

gives 𝐾𝑛 with an order that is prime or a power of a prime, implying 𝐾𝑛 is again not 

vertex perfect. If the order of the HOD is three, then n is either three, six, or nine. If n 

is three or nine, then 𝐾𝑛 has a prime or power of a prime order and 𝐾𝑛 is not vertex 

perfect. If n equals six, then 𝐾𝑛 is 𝐾6. A quick check of the divisor sieve shows that 𝐾6 

is not vertex perfect.  
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Suppose the highest order divisor of 𝐾𝑛 is at least four. For any graph of 

order four or more, the number of non-isomorphic, connected graphs on m vertices 

is greater than m. 

Let q be the order of the HOD of 𝐾𝑛. Because n is not prime, 𝑞 must be greater 

than one. For some positive integer 𝑝 no greater than q, we must have that 𝑝𝑞 = 𝑛 

since q properly divides n. We then have that 

1 + 𝑞𝑞 ≥ 1 + 𝑝𝑞 = 1 + 𝑛 > 𝑛 

If follows from the divisor sieve that Kn must not be vertex perfect. ∎ 

2.2 From Perfect Paths to Infinity 
 
 If we know that a certain graph is vertex perfect, can we then use that graph 

to create a new graph that is also vertex perfect? For specific types of graphs, it 

turns out that the answer is yes.  What follows is our first result found towards this 

question and it demonstrates that perfect paths with order n can be used to 

generate at least one additional vertex perfect graph of order 2𝑛.  

Theorem 17: If n is perfect, then there exists a VPG with order 2n. 

Proof: Let 𝑃𝑛 be a vertex perfect path. Select one of the vertices at either end of 𝑃𝑛 

and label it 𝑣1,1. Label the vertex adjacent to 𝑣1,1 as 𝑣1,2, the vertex adjacent to 𝑣1,2 as 

𝑣1,3, and so on until we reach 𝑣1,𝑛. If we add a new, separate component of 𝑃𝑛 to this 

graph, label it similarly (with the exception that the first index is a two instead of a 

one), and add an edge between the vertices 𝑣1,𝑛−1 and 𝑣2,𝑛−2, we have the following 

graph J on two joined copies of 𝑃𝑛: 
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Figure 10. The graph J formed from joining two perfect paths of the same order. 

 
J retains the divisors of 𝑃𝑛 in addition to having 𝑃𝑛 itself as a divisor. If these are the 

only divisors of J, then J must be vertex perfect.  

By J’s construction, we have that |𝐽| = 2𝑛. Let 𝑞1, 𝑞2 … 𝑞𝑚 be all of the positive 

integers that properly divide n. Clearly these numbers also divide 2n. The only other 

orders that can possibly divide 2n are 2𝑞1, 2𝑞2 … 2𝑞𝑚. For some i and j such that 

1 ≤ 𝑖, 𝑗 ≤ 𝑚, it could be that 2𝑞𝑖 = 𝑞𝑗 . Let 𝑟𝑤 be any 2𝑞𝑖  such that 2𝑞𝑖 ≠ 𝑞𝑗 . To show 

that J is vertex perfect, we must show that there are no graphs of order 𝑟𝑤 that are 

vertex divisors of J and that the only graphs of orders 𝑞1, 𝑞2, … 𝑞𝑚 , 𝑛, that are 

divisors of J are the paths 𝑃𝑞1
, 𝑃𝑞2

… 𝑃𝑞𝑚
, 𝑃𝑛.  

We begin by showing that there are no graphs of order 𝑟𝑤 that cover J. We 

know by our earlier reasoning and by the corollary to theorem 2 that 𝑟𝑤 < 𝑛. If we 

utilize 𝑣1,1 in a grouping of some graph of order 𝑟𝑤, 𝑣1,2 must then also be used so as 
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not to disconnect 𝑣1,1 from the grouping, and the same for 𝑣1,3 and on to 𝑣1,𝑟𝑤
. 

Hence, if any graph of order 𝑟𝑤 is to cover J, it must be 𝑃𝑟𝑤
 (this same argument can 

be applied to the orders of 𝑞1, 𝑞2 … 𝑞𝑚, saving us the trouble of tackling these cases 

later).  By the definition of 𝑟𝑤, there is no positive integer t such that 𝑡(𝑟𝑤) = 𝑛 

(otherwise 𝑟𝑤 is equal to some 𝑞𝑖). This implies that if 𝑃𝑟𝑤
 is to be a divisor J, one of 

the copies of it produced in J by edge deletion must utilize vertices from both the 

first and second copies of 𝑃𝑛. Furthermore, only one of the copies of 𝑃𝑟𝑤
 can utilize 

vertices in both copies of 𝑃𝑛 since there is only one edge between both copies.   

Examine the copy of 𝑃𝑟𝑤
 that is to contain 𝑣1,𝑛. Clearly this copy of 𝑃𝑟𝑤

 must 

also contain 𝑣1,𝑛−1. If  𝑟𝑤 = 2, then 𝑃𝑟𝑤
 is not a divisor of J since it does not utilize 

vertices in both copies of 𝑃𝑛. So it must be that if this copy of 𝑃𝑟𝑤
 includes 𝑣1,𝑛−1, it 

must also include 𝑣2,𝑛−2.  We must then have another vertex in this copy of 𝑃𝑟𝑤
 since, 

by definition, 𝑟𝑤 must be even. To maintain the path structure of this copy of 𝑃𝑟𝑤
, we 

must include 𝑣2,𝑛−1 or 𝑣2,𝑛−3, but we cannot include both. If we include 𝑣2,𝑛−3, then 

𝑣2,𝑛−1 and 𝑣2,𝑛 cannot be joined into a path of order greater than two, so it must be 

that 𝑣2,𝑛−1 and 𝑣2,𝑛 must be the remaining vertices of this path. This implies that 

𝑟𝑤 = 5, which cannot be true since 𝑟𝑤 is even. Hence, there are no graphs of order 𝑟𝑤 

that are divisors of J and the only graphs of order less than n that are divisors of J are 

paths that cover 𝑃𝑛. 

It now remains to show that 𝑃𝑛 is the only graph of order n that is a divisor of 

J. If we choose 𝑣1,𝑛 to be in a copy of some graph of order n that is to be a divisor of J, 

we must then select 𝑣1,𝑛−1. If we do not then select all of the remaining vertices in 
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the first copy of 𝑃𝑛, some number of vertices less than n will not be able to be joined 

into a copy of a graph of order n. This implies that the only graph that can be a 

divisor of J of order n is 𝑃𝑛. ∎ 

Of course the method of the above theorem is not the only way to generate a 

new vertex perfect graph from a specific path. The above structure is useful 

however in proving other results, namely that there are infinitely many vertex 

perfect graphs (a result not yet known for perfect numbers!).  By strategically 

connecting J to other copies of J, we can generate an infinite number of vertex 

perfect graphs of order 2𝑛(2𝑚) for nonnegative integer m.  

Theorem 18: There are infinitely many vertex perfect graphs. 

Proof: Take two copies of the same perfect path 𝑃𝑛 and add an edge between 𝑣1,𝑛−1 

and 𝑣2,𝑛−2. We then have the following graph J on 2n vertices that must be vertex 

perfect by the above theorem. Let G be the graph constructed in the following way: 

take some 2𝑥  (x is a nonnegative integer) of labeled copies of J (i.e. 𝐽1, 𝐽2, … 𝐽2𝑥) and 

join the odd copies of 𝐽𝑚’s 𝑣2,𝑛−2 to  𝐽𝑚+1’s 𝑣1,𝑛−1 and also join the even 𝐽𝑚’s 𝑣2,𝑛−2 to 

𝐽𝑚+1’s 𝑣1,𝑛−1 (provided that the next adjacent graph exists). G is the graph pictured 

below: 
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Figure 11. The graph G formed from joining copies of J together.  

 
We wish to show that G is vertex perfect. To do this, we will show that G satisfies 

the following four criteria:  

1. The only graphs of orders less than or equal to n that are divisors of G are 𝑃𝑛 

and 𝑃𝑞𝑖
, where 𝑞𝑖 is some proper divisor of n. 

2. The only graphs of order 2𝑦(2𝑛) < 2𝑥(2𝑛) that are divisors of G are J and 

graphs consisting of full, adjacent copies of J.  

3. No graphs of order 2𝑟(𝑞𝑖) ≠ 𝑞𝑗 , 𝑛, 2𝑦(2𝑛) (which are the only other possible 

orders divisors of G based on how G has been constructed) are divisors of G.  

4. The graphs that are shown to be vertex divisors of G cover G.  

We begin by demonstrating criteria one. Let 𝑞𝑖 be a divisor of n. Suppose a graph 

H of order 𝑞𝑖 is a divisor of G. We must then be able to erase edges from G to produce 

some number of isomorphic copies of H. If we include 𝑣1,1 from 𝐽1 in one of these 

copies of H, we must then include the next number of 𝑞𝑖 − 1 vertices along this first 

copy of 𝑃𝑛 in 𝐽1 in the same copy of H. Since 𝑞𝑖 is a proper divisor of n, by the 
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corollary of theorem 2, we must have that 𝑞𝑖 ≤
𝑛

2
. Because the smallest perfect path 

is on six vertices, clearly the only way that 𝑣1,1 and the next 𝑞𝑖 − 1 can be included in 

a connected graph is as a path on 𝑞𝑖 vertices. So the only graphs on order 𝑞𝑖 that can 

be vertex divisors of G are 𝑃𝑞𝑖
. 

 Now suppose a graph of order n covers G. It is obvious that 𝑃𝑛 is a divisor of 

G. A graph H of order n other than 𝑃𝑛 cannot be a divisor of G because if we include 

𝑣1,1 from 𝐽1 to be in one of the copies of H that G would need to be able to be divided 

into, we must include all vertices up to at least 𝑣1,𝑛−1. If 𝑣1,𝑛 is then not included in 

the same component, it will be separated from the rest of the components since the 

inclusion 𝑣1,𝑛−1 in a different component separates it from the rest of the graph. We 

have thus satisfied criteria one. 

We now move to demonstrate criteria two. Suppose a graph H of order 

|𝐻| = 2𝑦(2𝑛) < 2𝑥(2𝑛) is a divisor of G. It must be that vertex 𝑣1,1 of 𝐽1must be in 

one of the components of H that G can be divided into by edge deletion. If we include 

𝑣1,1 of 𝐽1, then we must include 𝐽1. This is because 𝐽1 is a tree, which implies that not 

including a vertex in 𝐽1 will separate that vertex into a component of order less than 

|𝐻|. Furthermore, if we include any vertex from a component of 𝐽𝑢, we must then 

include all of its vertices by the same reasoning. It follows that the only graphs of |𝐻| 

that are divisors of G are graphs consisting of full, adjacent copies of J. Also, H will 

contain some power of two copies of J’s (less than the total number of J’s) since 

these are the only subgraph of order 2𝑦(2𝑛) that properly divide |𝐺|.  

We now move to the third criteria. Take the number 2𝑟(𝑞𝑖). By its definition, for 

some number 𝑚 ≤ 𝑥, we must have that 2𝑚−1(2𝑛) <  2𝑟(𝑞𝑖) < 2𝑚(2𝑛). If a graph H 
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with order |𝐻| = 2𝑟(𝑞𝑖) is to be a divisor of G and we include 𝑣1,1 in one of the 

copies of H that G can be divided into by edge deletion, if follows that we must 

include the first full 2𝑚−1 copies of J in the same component (not doing so would 

separate some number of vertices less than 2𝑟(𝑞𝑖) from G). By the same reasoning, 

because within each copy of J, each copy of 𝑃𝑛 has only one vertex that is adjacent to 

vertices in other copies of 𝑃𝑛, H must either include some integer number of copies 

of full, adjacent J’s or must be some integer number of copies of full adjacent J’s plus 

half of one copy of J. A graph of either construction will have an order that will not 

properly divide 2𝑥(2𝑛), so there are no graphs of order 2𝑟(𝑞𝑖) that are divisors of G.  

For the final criteria, we need to show we can assemble the same number of 

copies of J that are in G from the divisors of G. We can assemble one copy of J from 𝑃𝑛 

and its divisors. The other divisors of G are full, adjacent 2𝑚 < 2𝑥  copies of J.  Thus, 

it follows that we must show that the number of J’s that can be assembled from the 

divisors of G sums to the number of J’s present in G. The sum to be shown is as 

follows: 

1 + 1 + 2 + 4 + 8 + ⋯ + 2𝑥−1 = 2𝑥 , 
 

which is clearly follows from the formula for a geometric series. ∎ 
 

2.3 Progress on Generalizing Generation 
 
 As seen in the last section, it appears that new vertex perfect graphs can be 

generated from known vertex perfect graphs by minimally connecting identical 

copies of it with new, strategically placed edges. This approach to generating new 

vertex perfect graphs has yielded great success for specific types of graphs in which 

plenty is known about the corresponding edge structures. For vertex perfect graphs 
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in general however, only a partial result has been able to be produced. We now 

define this idea of generation and afterwards state and prove the mentioned partial 

result. 

 If G is a vertex perfect graph, then we know that G is covered by its divisors. 

Suppose that G has n different spanning graphs. None of theses spanning graphs are 

divisors of G since their orders do not properly divide |𝐺|. The orders of these 

spanning graphs do however properly divide any multiple of |𝐺| greater than |𝐺|. If 

we sum the total number of vertices that are in the divisors of G (which is |𝐺| since G 

is vertex perfect) and in all of the n different spanning graphs of G, we get the 

number (𝑛 + 1)|𝐺|. It follows that if we can take (𝑛 + 1) copies of G and join them 

without producing any new vertex divisors besides the spanning graph of G, then 

that newly produced graph should be vertex perfect. This process is referred to as 

perfect generation. For a visual representation of this process, see the following 

figures: 

 
 
 

 
Figure 12. Examples of Perfect Generation.  

 
 We now present the aforementioned result. 
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Theorem 19: Let G be a vertex perfect graph and let n be the number of spanning 

graphs of G. If the graph J formed by joining the same vertex in n copies of G to a 

vertex 𝑣𝑗  in a (𝑛 + 1) copy of G does not have any divisors with order less than |𝐺| 

that properly divide |𝐽| but not |𝐺|, then J is vertex perfect.  

Proof: Let G be vertex perfect and let n be the number of spanning graphs of G. 

Suppose we can form the above described graph of J without producing any new 

divisors with order less than |𝐺| that properly divide |𝐽| but not |𝐺|. J is then the 

graph featured in the following figure: 

 
Figure 13. The Generated Graph J. 

 
 We wish to show that J is vertex perfect. Here are the criteria that must be satisfied: 

1. We must show that the original divisors and spanning graphs of G are 

divisors of J and that they cover J.  

2. We must show that there are no other new graphs of the orders that 

divides|𝐺| that are divisors of J. 

3. We must show that there are no divisors of J of an order that properly divide 

|𝐽| but not |𝐺|.   
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The first criterion follows from the fact that J has been constructed from full 

copies of G. Each of the copies of G can be broken into its original divisors and 

clearly each of the spanning graphs of G is a new divisor of G. G can be covered by 

this set of divisors by allocating each spanning graph to n of the 𝑛 + 1 copies of G 

and reserving a final copy of G to break into its original divisors.   

We now move to the second criterion. Suppose a new graph H of order that 

divides |𝐺| (not necessarily properly) is a divisor of J. If we try to divide J into  

|𝐽|/|𝐻| copies of H by edge deletion, we must select the vertex 𝑣𝑗  to be in one of the 

newly produced copies of H. If we select 𝑣𝑗  and then any number of vertices in 

another copy of 𝐺 besides Gn+1, the remaining vertices of Gn+1 will be broken off into 

a new component with a number of vertices that that is not divisible by |𝐻|. This 

implies that H is a divisor of J if and only if it is a divisor of G. The second criterion is 

then satisfied.  

We now move to the final criterion. We break into two cases: first suppose 

that J has a new divisor H of order that is greater than or equal to |𝐺| and suppose H 

has the other property mentioned in criterion 3. If we select the vertex 𝑣𝑗  to be in 

one of the copies of H that J can be divided into by edges deletion and select any 

number of vertices in Gn+1 to be in that same covering, we must then select all of the 

vertices in Gn+1 to be in this same covering otherwise some number of vertices less 

than |𝐻| will be broken off into a separate component. By this logic however, all 

vertices of J must be included in the same copy of H that includes 𝑣𝑗 . Hence there are 

no new divisors of J with order greater than |𝐺| with the specifications of criterion 3. 
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H cannot have order less than |𝐺| and have the other property of criterion 3 

by the assumptions of this theorem. This completes the proof. ∎ 

2.4  The Vertex Perfect Graph Catalogue 
 
 Using previously listed theorems, we now produce a catalogue of orders 1 to 

100 and whether or not exists a corresponding vertex perfect graph. 

 By theorem 7, there are no vertex perfect graphs of prime order. This 

eliminates the following orders: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 

59, 61, 67, 71, 73, 79, 83, 89, and 97.  

By theorem 8, there are no vertex perfect graphs with orders that are powers 

of primes. The following orders are then also eliminated: 1, 4, 8, 9, 16, 25, 27, 32, 49, 

64, and 81.  

Theorem 9 allows us to eliminate any order that is the product of 2 and 

another prime greater than three, including: 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 

86, and 94. By theorem 9, we can similarly eliminate orders that are the product of 3 

and a prime greater than 7, including 33, 39, 51, 57, 69, 87, and 93. The following 

orders simply do not satisfy the Divisor Sieve: 15, and 50.  

 The orders 52 and 68 are shown in the following theorem not to contain any 

corresponding VPGs: 

Theorem 20: There are no vertex perfect graphs of order 52 or 68.  

Proof: Suppose G is a vertex perfect graph of order 52 or 68. If |𝐺| = 68, then by the 

Divisor Sieve, G must have one of the two following combinations of divisors: four 

divisors of order 4, one of order 17 and one of order 34 or G must have only four 

divisors of order 4 and three of order 17. If |𝐺| = 52, then by the divisor sieve, G 
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must have one of the two following combinations of divisors: three divisors of order 

4, one of 13 and one of 26 or three divisors of order 4 and three of order 13. So G 

must have at least three divisors of order 4 and no divisors of order 2. As there are 

only 6 different connected graphs of order 4 with only one does have a divisor of 

order 2, by theorem 4, G must have a divisor of order 2. This is a contradiction. ∎ 

 From the methods used to prove theorem 18, we know that there will be 

vertex perfect graphs with orders: 6, 12, 24, 28, 48, 56, and 96. The following orders 

have been found to have vertex perfect graphs either by perfect generation or trial 

and error:  

18, 20, 21, 30, 40, 45, 54, 55, 60, 72, 78, 80, 84, and 90. The sixteen remaining, 

unlisted orders may possibly have corresponding vertex perfect graphs. These 

results are summarized in the table on page 76. 
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Chapter 3 
Vertex Perfect Trees 

 
 
 In this chapter, we begin an investigation of trees in the context of this 

generalization. Trees are relatively easier to research than other broader types of 

graphs since much is known about their structure. They serve as a nice “first step” 

for proving (or disproving) difficult conjectures. The main goal of this chapter is just 

that; we wish to uncover as many potent theorems about trees and vertex perfect 

trees so that it becomes possible to prove more interesting theorems in the limited 

case of these minimally connected graphs. 

 

3.1 The Reducibility of Trees and the Trusty Bridge Theorem 
 
 How are trees related to their divisors? The answer to this question begins 

with the following lemma, which dictates the number of edges that must be deleted 

when producing a divisor covering of a tree. 

Lemma 21: Let T be a tree and let Q be a vertex divisor of T. The number of edges 

that must be deleted to produce Q’s covering onto T is |𝑇|/|𝑄| − 1. 

Proof: If T is a tree and Q is a vertex divisor of T, then by theorem (), Q’s covering 

onto T consists of |𝑇|/|𝑄| copies of Q. As every edge in a tree is a bridge, the deletion 

of any edge in T increases the number of its components by one. Because T has only 

one component, deleting |𝑇| |𝑄|⁄ − 1 edges from T will produce |𝑇|/|𝑄| new 

components.  ∎ 

In addition to providing the leverage needed for the next result, this lemma 

demonstrates an interesting consequence of the minimal connectedness of trees and 
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their divisor coverings. We know that deleting an edge from a graph either increases 

the number of its components by one or leaves the total number of its components 

unchanged. This allows us to conclude that the minimum number of edges that must 

be deleted to produce a divisor covering of a graph is one less than the quotient of 

their orders, as this would imply that a new component has been produced with 

each edge deleted in that graph. In short, the above lemma states that the number of 

edges to be deleted to produce a divisor covering for a minimally connected graph is 

also minimal.  

 We now use this lemma to prove the following important theorem 

concerning trees. 

Theorem 22: Let T be a tree, Q a vertex divisor of T, and E the set of edges that must 

be deleted to produce T’s Q covering. The graph formed by contracting all edges not 

in E is also a tree, and has order |𝑇|/|𝑄|.  

Proof: If we contract all of the edges of T not in E, then all of the vertices in each 

copy of Q of T’s Q covering are “fused” into a single vertex. This follows from the fact 

that only edges incident with two vertices in the same copy of Q in T’s Q covering 

will be collapsed. Edges incident with two vertices in different copies of Q must 

belong to E and are accordingly preserved in this new graph. 

 This implies that the graph produced from collapsing all of the edges not in E 

must have |𝑇|/|𝑄| vertices. From the previous lemma, we also know that this graph 

must have size |𝑇| |𝑄|⁄ − 1. It is known that connected graphs with size one less 

than their order are trees, so this resulting graph must also be a tree. ∎ 
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 This result demonstrates that divisors of trees compose their parent graphs 

in a way that reduces to the structure of simpler trees. For example, the following 

graph T of order 24 has vertex divisors with order 4 and 12 (see the figure below). 

We can then see that the coverings of these vertex divisors map to simpler trees 

produced by collapsing the edges within each divisor as they occur in T. We call 

these resulting graphs reducible trees. 

 
Figure 14 (a). A tree of order 24. 

 
Figure 15 (a). An example of a divisor covering of a tree and its corresponding 

reducible tree. 

 
Figure 15 (b). Another example of a divisor covering of a tree and its corresponding 

reducible tree. 
 

T
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 The previous theorem can be used to prove the existence of a certain type 

edge found in trees called a trusty bridge. A trusty bridge in a connected graph G 

with vertex divisor Q is an edge that when deleted, separates a copy of exactly Q 

from the rest of G. It is essentially the edge that connects a leaf in a reducible tree. As 

such, we call the copy of Q that can be separated from T by deleting its 

corresponding trusty bridge a reducible leaf.  

The importance of trusty bridges existing in trees cannot be overstated. This 

will be demonstrated in the proofs that accompany theorems in later sections, as 

they all rely on the existence of trusty bridges (hence the name “trusty bridge”). We 

finish this section by stating this result. 

 

Theorem 23 (the Trusty Bridge Theorem): Let T be a tree and let Q be a vertex 

divisor of T. There exist at least two trusty bridges in T that produce Q. 

Proof: By the previous theorem, we know that the graph formed by collapsing all 

edges not in a Q covering of T is a tree. We also know that each vertex in that 

reducible tree corresponds to a copy of Q in T, and that the one edge that joins any 

two vertices in the reduced tree must correspond to a single edge that joins any two 

copies of Q in T. As proven on page 35 in [A1], every tree with order greater than 

two must have at least two leaves. These two leaves in the reduced tree correspond 

to two copies of Q that are only adjacent to one other copy of Q in T. The edge that 

provides this adjacency is a trusty bridge.  ∎ 
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3.2 Vertex Peninsulas and the Binary Divisor Sieve 
 
 It is often advantageous to utilize certain sections of a graph when 

demonstrating that it does (or does not) have a given vertex divisor. For example, if 

we want to show that the following graph does not have any vertex divisors of order 

4, we could arbitrarily choose vertex v1 to be in some divisor covering of order 4. We 

can see that choosing v1 implies that we must also choose vertices v2, v3, and v4 to be 

in the same vertex divisor, as not choosing all of them causes at least one vertex to 

be separated into its own component with order less than 4.   Separating the v1-4 

component from the rest of the graph leaves C8, a graph whose vertex divisors only 

include paths. Because the group of four labeled vertices do not form a path of order 

4, this order 12 graph must not have any vertex divisors of order 4.  

 
Figure 16.  

 
The grouping of labeled vertices in the above figure restricts what the divisors of the 

entire graph can look like. We call this specific type of structure within a graph a 

vertex peninsula and define it as follows; 

 Let G be a connected graph, let v be a cut vertex, and let {𝐻1, 𝐻2, … , 𝐻𝑛} be the 

set of components produced in G when v is deleted. Also, Let 𝑆 = {𝐻𝑖, 𝐻𝑗 , … , 𝐻𝑟} be 

some arbitrary, non-trivial subset of the set {𝐻1, 𝐻2, … , 𝐻𝑛}. The subgraph in G 

v1

v2

v3

v4
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formed by the vertex v, the vertices of S, and all of their corresponding adjacencies 

form a vertex peninsula of order 1 + |𝐻𝑖| + |𝐻𝑗| + ⋯ + |𝐻𝑟|. We call the cut vertex 

that connects the vertex peninsula to the rest of the graph the connector. 

 The following lemma formalizes our intuition of how vertex peninsulas affect 

the divisors of graphs.  

Lemma 24 (The Vertex Peninsula): Let G be a connected graph. If G has a vertex 

peninsula P and a vertex divisor Q such that |𝑃| = |𝑄|, then 𝑄 ⊆ 𝑃. 

Proof: Suppose the hypothesis of this lemma. Select the connecter of P to be in one 

of the |𝐺| |𝑄|⁄  copies of Q in G’s Q covering. If we do not select some number of the 

remaining vertices in P to be in the same copy of Q as the connecter of P, then those 

vertices will be broken into their own component(s) when the “connector-

containing” copy of Q is separated from G. It follows that all of the vertices in P must 

be selected to be in this same component, implying that Q is some spanning graph of 

P.   ∎ 

 This lemma is particularly important to trees. Before we can demonstrate 

this however, we need the following theorem that states the only vertex divisors of 

trees are trees.  

Theorem 25: If T is a tree and Q is a vertex divisor of T, then Q is also a tree. 

Proof: Suppose Q is not a tree. Q must then have at least one cycle, which would 

imply that T also has at least |𝑇| |𝑄|⁄  cycles. This cannot be true, so Q must also be a 

tree.    ∎ 

 Combining the last two results along with the trusty bridge theorem from the 

previous section allows us to prove a surprising fact about the divisors of trees. We 
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can already see that the divisors of any given order of a tree are restricted by the 

fact that they must also be trees. This limits the number of divisors per order that 

any tree can have. It turns out that the divisors of trees are also limited to one per 

order; that is, if T is a tree and Q1 and Q2 are different vertex divisors of T, then 

|𝑄1| ≠ |𝑄2|.  

Theorem 26: Let T be a tree and Q a vertex divisor of T. Then Q is T’s only vertex 

divisor of order |𝑄|.  

Proof: If T is a tree and Q is one of its vertex divisors, then by the trusty bridge 

theorem, there exists a bridge in T that when deleted separates one copy of Q into its 

own component. Label this edge e, and examine the vertex that is both incident with 

e and in this specified copy of Q. Clearly this vertex is the connector of a vertex 

peninsula with order |𝑄|. So if T has any other vertex divisors of order |𝑄|, it must 

be a spanning subgraph of Q by the vertex peninsula lemma. By the previous 

theorem, Q must be a tree. Because the only spanning graph of a tree is itself, Q is the 

only vertex divisor of T with order |𝑄|.    ∎  

 This theorem has implications for vertex perfect trees, especially for the 

divisor sieve that governs the possible orders they appear on. When an order that 

corresponds to a tree is put through the sieve, the constants corresponding to the 

number of vertex divisors a vertex perfect graph has of a given order are limited to 

one or zero. This new “binary version” of the divisor sieve is summarized in the 

following theorem.  
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Theorem 27 (The Binary Divisor Sieve): Let T be a vertex perfect tree and let 

𝑞1, 𝑞2, … 𝑞𝑛 be the proper divisors of |𝑇| that are greater than one. The following 

equation holds: 

1 + 𝑐1𝑞1 + 𝑐2𝑞2 + ⋯ + 𝑐𝑛𝑞𝑛 = |𝑇| 

where ci is the number of vertex divisors that T has of order qi and is either 0 or 1.  

Proof: The above equation is just the divisor sieve with restricted values for the ci 

terms. If T is vertex perfect, then the divisor sieve must hold. It remains to show that 

each ci takes on the mentioned, restricted values. The restriction follows from the 

previous theorem.  ∎ 

 In other words, the only orders eligible to have vertex perfect trees are those 

that are some subset of their proper divisors. These numbers are called semi-

perfect, and the divisor sieve in this case simply finds these numbers and the 

subsets of their divisors that sum to them.  

 

3.3 More Properties of Vertex Divisors 
 
 As the title suggests, in this section we provide a number of results that will 

help paint a generalized picture of trees relative to their divisors. We begin by 

establishing the following theorem about their divisor coverings: 

Theorem 28: Let T be a tree and Q a vertex divisor of T. The divisor covering of Q 

onto T is unique.  

Proof: If Q is a vertex divisor of T, then Q must be a tree. It also follows that T can be 

assembled by taking |𝑇| |𝑄|⁄  copies of Q and adding edges amongst them. Let this set 



 45 

of edges added to produce T be called E. If we remove E, then we produce T’s Q 

covering.  

Suppose another covering of Q can be produced by removing edges not 

strictly in E. Because T is a tree, if we delete any one edge outside of E, we separate T 

into two components. Deleting an edge not in T must divide one of the earlier 

mentioned copies of Q, implying that the two produced components have orders 

that are some nonnegative multiple of |𝑄| plus some positive number of vertices 

less than |𝑄|. Because neither of these components are divisible by |𝑄|, a covering of 

Q cannot be achieved in this case. Hence, the only covering of Q onto T is produced 

when only deleting edges from E.   ∎ 

 So there is only one way to break a tree into copies of one of its divisors. It is 

important to note that this is not necessarily true of perfect coverings onto vertex 

perfect trees. For example, the following image shows three different ways to form a 

perfect covering of P6. 

                     

 
Figure 17. 

 
 The next two theorems demonstrate how the presence of multiple vertex 

divisors in a tree imply structure within its higher order divisors. In short, the 
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presence of many divisors forces higher order divisors to assume a shape that 

accommodates lower order divisors. Here is the first theorem: 

Theorem 29: Let T be a tree with vertex divisors Q1 and Q2. If |𝑄1| < |𝑄2| then 

𝑄1 ⊂ 𝑄2. 

Proof: If Q2 is a vertex divisor of T, then there exists a trusty bridge e in T that when 

deleted separates one copy of Q2 into its own component. Let the vertex incident 

with e in this copy of Q2 be called v. Choose v to be in one of the |𝑇|/|𝑄1| copies of Q1 

that T can be divided into by edge deletion.  Regardless of the number of vertices we 

choose to include from the Q2 reducible leaf to be in the copy v containing Q1 , 

because |𝑄1| < |𝑄2|, some number of vertices less than |𝑄2| will be separated into 

their own component when the v containing Q1 is separated into its own component. 

It follows that if Q1 is a divisor of T, then the mentioned component that is produced 

must have Q1 as a divisor, implying that 𝑄1 ⊂ 𝑄2. ∎ 

 The above theorem is exciting in that it tells us much about what trees with 

multiple divisors must look like. As lower order divisors are subgraphs of their 

higher order divisors, higher order divisors are guaranteed to contain at least one 

full copy of their lower order divisors within their structure.  Thus if we begin by 

examining the HOD of a tree, we can guarantee that a full copy of the next lowest 

order divisor is in this graph. Similarly, the next lowest order divisor must also 

contain a copy of the next lowest order divisor, and so on until we reach K1. This 

provides a “core” of divisors within the HOD, the HOD which in turn has a unique 

covering onto its parent graph that also mimics the behavior of a tree. We 

summarize this picture with the following figure. 
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Figure 18. 

 The above tree of order thirty is vertex perfect and is shown with its perfect 

covering. Its highest order divisor is the orange subgraph on the right with order 15, 

featured in the next image. 

 
Figure 19. 

We can then see that a full covering of the original VPT’s next highest order divisor 

of order 6 within the order 15 HOD. 
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Figure 20 

We then get a successive relationship of the next lower order divisors being 

contained with each of the higher order divisors: 

             
Figure 21. 

More generally, the following figure demonstrates how we represent this idea of 

higher order divisors of a tree containing the lower order divisors. 

 

 
Figure 22 (a). 

HOD 2nd HOD LOD
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Figure 22 (b). 

 
 It turns out that we can extract even more information from the divisors of T; 

we can also figure out how many copies of a lower order divisor are contained in a 

higher order divisor. This is done in a surprisingly similar way to how the number of 

divisors in a graph is calculated: by simply taking the quotient of the orders of the 

divisors. Here is the statement and proof: 

Theorem 30: Let T be a tree and let Q1 and Q2 be vertex divisors of T. WLOG, let 

|𝑄1| < |𝑄2|. The number of full copies of Q1 contained in Q2 is given be ⌊|𝑄2|/|𝑄1|⌋. 

Furthermore, if |𝑄1| is a proper divisor of |𝑄2|, then Q1 is a vertex divisor of Q2. 

Proof: Assume the hypotheses of the above theorem. If Q2 is a vertex divisor of T, 

then there exists a trusty bridge e that connects a Q2 reducible leaf to the rest of T. 

Choose the vertex v incident with e that is in the Q2 reducible leaf to be in one of the 

copies of Q1 that T can be divided into by edge deletion. 

 Suppose that |𝑄1| does not divide |𝑄2|. Then the copy of Q1 containing v must 

contain a number of vertices from the Q2 reducible leaf such that when it is 

separated from T, the remaining number of vertices in Q2 is some multiple of |𝑄1|. If 

HOD

2nd HOD

LOD
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the number of vertices is not a multiple of |𝑄1|, then clearly the vertex covering of Q1 

onto T cannot be accomplished as the removal of the copy of Q1 containing v 

separates those remaining vertices into their own component. In addition, those 

remaining vertices must each be able to be divided into copies of Q1, or else Q1 is not 

a vertex divisor of T. It follows that the order of Q2 can be written as 

|𝑄2| = 𝑛|𝑄1| + 𝑟 

where n is multiple number of |𝑄1| left in Q2 when the v containing Q1 is deleted and 

r is the number of vertices that the v containing Q1 claims from the Q2 reducible leaf. 

Dividing both sides by |𝑄1| gives the following equation, which proves the theorem 

in question when Q1 does not divide Q2: 

|𝑄2|

|𝑄1|
= 𝑛 +

𝑟

|𝑄1|
 

 Now suppose that |𝑄1| does divide |𝑄2|. It follows that the copy of Q1 

containing v must have all of its vertices in the Q2 reducible leaf. If this is not true, 

then producing the Q1 covering causes some number of vertices in the Q2 reducible 

leaf not divisible by |𝑄1| to be separated into their own component (following from 

the fact that v is incident with the trusty bridge e). This implies that all of the 

vertices of Q2 must be able to be divided into some integer number of copies of Q1. 

Hence Q1 is a divisor of Q2. From theorem 30, we know that the number of copies of 

a divisor in a parent graph is the quotient of their orders. ∎ 

To illustrate the above theorem, we revisit the HOD of the previous figure 18. 

The HOD has order 15 and the highest order divisor has order 6, so we should 

expect to find at least 2 copies of the order 6 divisor in the HOD:  
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Figure 23. 

 

3.4 The Interchangeable Parts Theorem 
 
 This section concludes our investigation of the properties of trees in this 

generalization. We close with a theorem that demonstrates how close trees and 

their divisors come to mimicking the behavior of integers in the realm of number 

theory. Because of its consequences, this theorem has been named the 

interchangeable parts theorem, and is stated as follows: 

Theorem 31 (the Interchangeable Parts Theorem): Let T be a tree and let d1 and 

d2 be vertex divisors of T. T must have a vertex divisor of order G = 𝐺𝐶𝐷(|𝑑1|, |𝑑2|). 

Proof: The following proof is long and is filled with a number of partial results. As 

such, we have decided to organize some of these results by declaring them as 

lemmas within the proof. We do this so that during a first time read through this 

theorem, the reader can choose to skip the details associated with the partial results 

and instead get a feel for the overall structure of the larger theorem. Of course, the 

proofs of the lemmas remain where they normally would without this arbitrary 
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organization, so if the reader would like to wade into all of the gritty details, all they 

need to do is read from top to bottom.  

Assume the hypotheses of this proof. Without loss of genrality, let |𝑑2| > |𝑑1|. 

If 𝐺 = 1, then the result is trivial as all graphs have a vertex divisor of order 1. If 

𝐺 = |𝑑1|, the result is again trivial. For the remainder of this proof, assume that 

𝐺 ≠ 1, |𝑑1|.  

Begin by deleting an edge in T that separates T into two components, both of 

which have orders that are divisible by 𝐺. Such an edge must exist since d1 and d2 

are vertex divisors of T. In the newly produced components, continually repeat this 

process until what remains are a set of components all with orders that are some 

multiple of 𝐺 and that can no longer have edges deleted in them to produce new 

components also with orders that are multiples of 𝐺. Call the set of edges deleted in 

this process E, and call these newly formed components constituent graphs (or just 

constituents for short). Let C be the complete set of constituents produced from T by 

deleting E (note that each element of C may not be unique by C’s definition; that is, a 

given constituent may appear more than once in C).  

Lemma: E and C are unique. 

Sub-proof: We claim E must be unique, but suppose it is not. Let E1 and E2 be edge 

sets that satisfy the definition of E and suppose E1 is not equivalent to E2. Also, let C1 

be the set of constituents that produced when E1 is deleted. If E1 is a subset of E2, 

then not all of the edges that can be deleted to separate T into smaller and smaller 

components with orders that are multiples of G are deleted when deleting E1. A 

similar problem arises if E2 is a subset of E1, so if E1 and E2 are different, either E2 
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must contain an edge from T not contained in E1 or vice versa. Without loss of 

generality, suppose E2 that contains at least one edge e that E1 does not contain. e 

must be an edge that connects two vertices in the same constituent ce from C1. By 

definition, deleting e separates ce into two components, each with order that is not a 

multiple of G. This implies that only deleting e in T produces two new components 

with orders that are not multiple of G since both of these newly produced 

components contain some non multiple of G vertices corresponding to the separated 

ce plus some multiple of G vertices corresponding to the remaining, “intact” 

constituents. This implies that e cannot be in any E, and E must be unique.  

If E is unique, then C is also unique. ∎ 

The edges deleted to produce T’s d1 and d2 coverings are each subsets of E, 

since deleting any edge in the d1 covering produces components with orders that 

are multiples of |𝑑1| and deleting any edge in a d2 covering produces components 

that with orders that must be multiples of |𝑑2|. This implies that these various 

constituents as they appear in T are preserved when producing said coverings (that 

is, when producing the d1 and d2 coverings of T, we do not delete any edges in the 

constituents as they appear in T). It follows that both T’s d1 covering and T’s d2 

covering can be produced by adding edges amongst the various elements of C. 

We now break to produce some necessary information about the structure of 

T’s d1 covering relative to T’s d2 covering. By theorem 23, we know that if d2 is a 

vertex divisor of T, then there must exist some d2 trusty bridge in T that 

corresponds to a d2 reducible leaf. If d2 is the graph pictured to the left in the 

following figure, T is then the following graph of the right: 
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Figure 24. 

By theorem 30, we also know that there are 𝑛 = ⌊|𝑑2| |𝑑1|⁄ ⌋ copies of d1 

contained in d2. In the d1 covering of T, these full copies of d1 are utilized in the 

reducible leaves of d2 and then the remaining |𝑑2| (𝑚𝑜𝑑 |𝑑1|) vertices are all utilized 

by another single copy of d1. Let these remaining vertices of the d2 reducible leaf and 

the connected graph formed by including the adjacencies amongst these vertices be 

called r1. We then have the following image of d2: 

 

 
Figure 25. 

 
Refer to this copy of d1 that claims r1 in a d2 reducible leaf of T as d1S. Let each of the 

various regions claimed by d1S from other copies of d2 in T be labeled ri. With 

reference to the previous two images, we then can construct the following image of 

T:  

d2
T

The d2
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d1,2

d1,n

r1

d2d2
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Figure 26. 

 
We also know that d1 must be identical to d1S, which allows us to draw the following 

image of d1: 

 

 
Figure 27. 

 
 We now wish to show that in d1, all of the edges that join the various ri 

together in T belong to the earlier mentioned set of edges E. This would imply that 

any constituents contained in all of the ri are preserved when separating them into 

their own components by deleting those edges that join them together in T. This 

would also imply that each ri can be “assembled” by adding edges between some 
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number of the constituents from C. We know that all of the edges deleted to produce 

the d1 covering onto T are a subset of E.  If we can then show that the ri in each d1 

have orders that are multiples of 𝐺, this would show that the desired edges that join 

each of the ri in d1 are also in E. 

Lemma: Each ri has order that is a multiple of G. 

Sub-proof: We now wish to show that each of the other ri in d1S have orders that are 

multiples of 𝐺. Let ti be the subgraph of T that contains ri  from d1S and all other 

vertices that can be joined by a path in T that does not include any other vertices 

from d1S (and obviously all of the edges that connect them). When we separate d1S 

into its own component from the original graph T, ti is separated into its own 

component(s) as well. This is because if this was not true, then there would exist a 

path between some vertex in ti and some other vertex in another similarly defined 

subgraph of T, tj. This hypothetical path P would also utilize no vertices in d1S, and 

would exist in T without any of T’s edges being deleted. In T however, there also 

exists a path between these earlier two mentioned vertices in ti and tj that utilizes 

vertices from ri and rj since ri is in ti and rj is in tj and since any two vertices in d1S 

can be joined by a path. This implies the existence of a cycle in T, which is not 

possible. 

We know ti consists of the vertices of ri , the other vertices of the copy of d2 

that it is contained in, and some number of full copies of d2 as pictured below, 
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Figure 28. 

 
This implies that ti has order that is a multiple of G. If we remove d1S from T into its 

own component by edge deletion, the remaining vertices of ti not in ri must have 

order that is a multiple of G since d1 is a divisor of T. If they did not, then the divisor 

covering of d1 onto T is not possible; that is d1 cannot cover the remaining 

component. This implies that ri must have order that is a multiple of G. ∎ 

 With this, we may now conclude that each ri in T can be constructed by 

adding edges between constituents from C. Let Ci denote the set of constituents that 

can have edges added between them to produce ri from the set C. Ci is unique since 

the edges of E are unique. Suppose that for some i, Ci contains an element that is not 

isomorphic to any of the elements in C1. 

Regardless of what order we delete the edges in E from T, we should produce 

a collection of constituents, each of which can map ‘one to one’ to an isomorphic 

element of C (in other words, we should produce C regardless of the order that we 

remove the edges of E from T). Also, we know that since d1 is a vertex divisor of T, C 

should contain |𝑇| |𝑑1|⁄  copies of each element that belongs to each of the Ci (this is 

equivalent to deleting E by first breaking into the d1 divisor covering, separating 

ti

ri
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each ri into its own component, and then dividing edges to produce each constituent 

of each ci). 

 Now, delete the edges of E in the following manner: first delete all edges 

necessary to produce the d2 covering of T. This gives the following graph: 

 

 
Figure 29. 

 
We can then delete all of the ⌊|𝑑2| |𝑑1|⁄ ⌋ copies of d1 from each of the d2 into their 

various own copies.  

 
Figure 30. 

 
The edges deleted in doing so must be in E as the produced components have order 

divisible by G. These produced copies can then have edges deleted to reduce each of 

d1 into their various constituents, each of which clearly map to an element in C. After 

doing so, the constituents that remain to be mapped are those that compose |𝑇| |𝑑2|⁄  

copies of r1. The remaining elements that need to be mapped in C should all be of the 

constituents that correspond to integer multiples of d1, since at the moment, we 
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have only mapped some number of the constituents from less than |𝑇| |𝑑1|⁄  copies 

of d1 to C.  

This implies that the remaining elements in C include some number of the elements 

in Ci not isomorphic to any elements in C1. The only remaining constituents to be 

mapped however are those that comprise r1 and are resultantly elements of C1, 

implying the mapping cannot be produced. This is a contradiction since we have 

only deleted the unique edges of E in this process. It follows that all Ci must contain 

elements isomorphic to some constituent in r1. It can also be concluded that the 

remaining |𝑇| |𝑑1|⁄  copies of r1 can be divided into their constituents and those 

constituents can be used to assemble some number of full copies of d1. 

 We do not know how many of each type of non-isomorphic constituent are in 

r1. Break into two cases: There is only one constituent in r1 to which all other 

constituents in r1 are isomorphic to, or, there is at least one constituents of r1 that is 

not isomorphic to another constituent of r1. In the first case, it is easy to show that 

said constituent is a divisor of both d1 and d2 implying it is then a divisor or T. Since 

this constituent has order that is a multiple of 𝐺 and since the order of this 

constituent must divide |𝑑1| and |𝑑2|, it must in fact have order G (since you cannot 

have a common divisor greater than the greatest common divisor). 

Suppose the second case is true. We know that ri must contain at least two 

non-isomorphic constituents. Let k1 be the first constituent, let k2 be another 

constituent that is not isomorphic to k1, let k3 another constituent not that is not 

isomorphic to either k1 or k2…, and finally let kj be the final constituent not 

isomorphic to any of the previously mentioned constituents that compose ri.  
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From earlier in this proof (the part where we showed that each ci must have 

constituents isomorphic to some constituent in ci), we know that |𝑇| |𝑑2|⁄  copies of 

r1 can be broken into their constituents and then have edges added between them to 

assemble some integer number of d1. This implies that if r1 contains n1 copies of k1, 

n2 copies of k2 … and nj copies of kj, then d1 must contain xn1 copies of k1, xn2 copies 

of k2 … and xnj copies of kj. In other words, the ratio of different constituents in d1 

must be proportional to the ratio of those different constituents in r1. If this were 

not true, then disassembling the |𝑇| |𝑑2|⁄  copies of r1 into their constituents as wells 

disassembling the integer number of d1 that those r1’s constituents can be used to 

assemble would yield two different collections of constituents. Because d2 is 

constructed of joined copies of d1 and a single copy of r1, it must be the case that d2 

must also contain a number of each constituent that preserves these ratios.  

This implies that for some 𝑦 = 1/𝐺𝐶𝐷(𝑛1, 𝑛2, … , 𝑛𝑗) that divides the greatest 

common divisor of all of the ni, the number 𝑦(𝑛1|𝑘1| + 𝑛2|𝑘2| + ⋯ + 𝑛𝑗|𝑘𝑗|) must be 

a divisor of both |𝑑1| and |𝑑2|. But this is a contradiction since each ki has order that 

is no less than 𝐺. So it must be the case that there is only one type constituent to 

which all other constituents that comprise ri must be isomorphic to.  ∎ 

There are at least two important consequences of this theorem. First, it 

completes a powerful classification for where vertex perfect trees can occur. From 

the binary divisor sieve, we know that vertex perfect trees can only occur on orders 

that are semi-perfect.  Also, from theorem 1, we know that any vertex perfect tree 

has to have K1 as a vertex divisor, which means any semi-perfect number that lacks 

a divisor combination that sums to itself and contains 1 does not have any vertex 
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perfect trees. Finally, because of the interchangeable parts theorem, if these divisor 

combinations have two divisors but not their greatest common divisor, then that 

order cannot contain any vertex perfect trees. 

The second important consequence of the above theorem is its implication 

that any two divisors of the same tree have some kind of “interchangeable part.” 

Because the existence of two divisors d1 and d2 in T implies that T has a divisor dG 

with order 𝐺𝐶𝐷(|𝑑1|, |𝑑2|), and because |𝑑𝐺| is a divisor of |𝑑1| and |𝑑2|, there must 

exist a divisor of T that is also a vertex divisor of both d1 and d2, that divisor being 

dG. In a loose sense, this divisor dG serves as an interchangeable part between the 

divisor coverings of d1 and d2 onto T, with either numbered divisor claiming some 

integer number of full copies of dG in T. It turns out that if |𝑑1| is a divisor of 

|𝑑2|, |𝑑2| is a divisor of |𝑑1|, or if |𝑑1| and |𝑑2| are relatively prime, this 

interchangeable part is not very interesting.  

As an example, examine the following tree T on 30 vertices. 

 
Figure 31 (a). 

 
T has vertex divisors of order 10 and 15, and the respective divisor coverings 

are demonstrated as follows: 

T
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Figure 31 (b). 

 
As we expect from the interchangeable parts theorem, T also has a vertex 

divisor of order 5 (see figure below for its vertex covering). If we look at the divisor 

covering of order 10 onto T, we can see each of the copies of the order 10 divisor 

claim 2 copies of the order 5 divisor as it occurs in its covering onto T. Similarly, 

each copy of the order 15 divisor claims three whole copies of the order 5 divisor. 

 
Figure 31 (c). 

 
 

3.5 Vertex Perfect Tree Catalogue  
 
 We shall now produce a list of orders from 1 to 100 and whether or not those 

orders contain vertex perfect trees. From the binary divisor sieve, we know that the 

only orders that can contain vertex perfect trees are semi-perfect. So the only 

possible orders that contain vertex perfect trees between 1 and 100 are 6, 12, 18, 

20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, and 100. The 
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binary divisor sieve excludes 66 and 78 since their combinations of divisors that add 

to 66 and 78 respectively do not include 1. A combination of the binary divisor sieve 

and the interchangeable parts theorem excludes the orders from having vertex 

perfect trees: 18, 20, 36, 42, 54, 88, and 100. 

The following orders have had vertex perfect trees found on them: 6, 12, 24, 

28, 30, 40, 48, 56, 60, 72, 80, 84, 90 and 96. 

For a summary of the results of this section, see the table on page 77.  
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Chapter 4 
Amicable Graphs 

 
 
 In this chapter we extend the generalization of this paper beyond mapping 

perfect numbers to graphs. As the title suggests, we will define a graph theoretic 

analog of amicable pairs. We will then begin an investigation of this analog in the 

sections that follow, focusing mainly on translating the results of chapters one and 

two over to the newly defined object.  

 

4.1 Amicable graphs 
 

In Number Theory, amicable pairs are pairs of positive integers with the 

property that each integers’ proper divisors sum to the other. 220 and 284 are an 

example of an amicable pair as the proper divisors of 220 sum to 284 and the 

proper divisors of 284 sum to 220.  

We define amicable graphs to generalize these pairs as follows: two 

connected graphs A1 and A2 are amicable if each graph’s set of vertex divisors covers 

the other graph. A1 and A2 are called an amicable pairing.   

As an example, view the following two graphs A1 and A2. 

 
Figure 32 (a). 

A1
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Figure 32 (b). 

 
 It can be shown that in addition to P2 and K1, the following connected graphs 

constitute the exhaustive list of vertex divisors of A1: 

                                

 
Figure 33. 

 
We can then take the set of A1’s vertex divisors and construct A2 by adding the 

following red edges. 

A2
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Figure 34. 

 
It can also be shown that K1, P3, and the following connected graph form the 

exhaustive list of vertex divisors of A2. 

 
Figure 35. 

 
Because we can then take this set of vertex divisors and construct A1 as seen 

in the following image, A1 and A2 form an amicable pair. 

 
Figure 36. 

 
The reader may have noticed that amicable pairings are not necessarily 

unique; that is, if A1 and A2 are an amicable pair, there may exist another graph Aother 

such that either A1 and Aother or A2 and Aother also form an amicable pair. For example, 

the following graph can be shown to form an amicable pair with the previous graph 

A2. 

A2

A1
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Figure 37. 

 
This loss of uniqueness in the generalization makes amicable graphs less 

wieldy to work with then their number theory counterparts, which are clearly 

unique. It would be nice to have some property or object that characterizes a given 

set of similar amicable pairs. This subject is discussed more in the future work 

chapter of this paper (see page 72). 

  

4.2 Early Results on Amicable Graphs 
 
 In this section, we reformat previous results on vertex perfect graphs for 

amicable graphs. Additionally, we also supply one new result that builds on some of 

these reformatted theorems. These results are simply listed without the usual 

narrative for the sake of brevity. 

Theorem 32: If A1 and A2 are amicable graphs, then the sum of the orders of the 

divisors of A1 must be equal to |𝐴2| and the sum of the orders of the divisors of A2 

must be equal to |𝐴1|. 

Proof: Let A1 and A2 be amicable graphs. By definition, A1’s vertex divisors must 

cover A2 and A2’s vertex divisors must cover A1. This implies that A1 and A2 can be 

produced by adding edges between the set of each other’s divisors. Because adding 

edges does not increase the order a graph, the individual orders of A1’s vertex 

divisors must add to |𝐴2| and the individual orders of A2’s divisors must add to 

|𝐴1|.∎ 
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Amicable Divisor Sieve 33: Let A1 and A2 be connected graphs and let 

{𝑞1,1, 𝑞1,2 … 𝑞1,𝑚} be the proper divisors of |𝐴1| and {𝑞2,1, 𝑞2,2 … 𝑞2,𝑚} be the proper 

divisors of |𝐴2|. Also, let n1,i be the number of vertex divisors A1 has of order 𝑞1,𝑖 and 

let n2,i  similarly defined for A2. If A1 and A2 are amicable, then the following 

equations must hold: 

1 + 𝑛1,1𝑞1,1 + 𝑛1,2𝑞1,2 + ⋯ + 𝑛1,𝑚𝑞1,𝑚 = |𝐴2|  

1 + 𝑛2,1𝑞2,1 + 𝑛2,2𝑞2,2 + ⋯ + 𝑛2,𝑚𝑞2,𝑚 = |𝐴1| 

Proof: By theorem 32, we know that the orders of A1 and A2’s vertex divisors must 

sum to the order of the other graph, implying the existence of the above two 

equations. By theorems 1 and 2, each graph will have K1 as a vertex divisor and the 

other divisors of each graph must have orders that properly divide the order or 

their original graph, implying the left hand sides of both of the above equations. ∎ 

Theorem 34: K1 is not an amicable graph. 

Proof: As K1 has no vertex divisors, the set of its vertex divisors cannot be used to 

cover another graph. ∎ 

Theorem 35: If |𝐺| is prime, then G is not an amicable graph. 

Proof: Suppose G is amicable and that |𝐺| is prime. Then there must exist some 

other graph that can be covered by the set of divisors of G and also whose vertex 

divisors cover G. By the Amicable Divisor Sieve, the sum of the orders of the vertex 

divisors of G must be equal to the order of this other graph. Because |𝐺| is prime, the 

only vertex divisor that G can have is K1, a graph that can only cover itself. This 

implies that if G is amicable, it must be paired with K1. By theorem 34, that is not 

possible. ∎ 
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Theorem 36: If n and m are amicable numbers, then Pn, Cn, and Wn are all amicable 

graphs with Pm, Cm, and Wm. 

Proof: Let n and m be an amicable pair. By the path lemma and the techniques used 

in proving theorems 14 and 15, we know that the exhaustive list of vertex divisors 

of any path, wheel, and cycle includes all paths with orders that properly divide the 

path, wheel or cycle’s order. It follows that the sum of the orders of the vertex 

divisors of Pn, Wn, and Cn will equal m and that the sum of the orders of the vertex 

divisors of Pm, Wm, and Cm will equal n. Take the set of paths whose order properly 

divide n and join them so as to produce Pm (clearly this can be done). Then label Pm 

as seen in the following image: 

 
Figure 38. 

If we add an edge between v1 and vm, then we produce Cm. If we add an edge 

between v1 and vm-1 and then make vm adjacent to every other vertex in the graph, 

we then have produced Wm. This implies that the divisors of Pn, Wn, and Cn, cover Pm, 

Wm, and Cm. A similar argument shows that the latter three graphs vertex divisors 

cover the former three graphs. Hence, Pn, Cn, and Wn are all amicable graphs with Pm, 

Cm, and Wm.  ∎ 

Theorem 39: The smallest amicable graph that can be paired with another graph of 

differing order has order 10. Furthermore, the smallest order graph that an order 10 

amicable graph can be paired with is of order 18. 

v1 v2 v3 vm 1 vm

Pm
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Proof: In the previous section, the two example graphs A1 and A2 (see figure 32a and 

32b) were shown to be amicable graphs with respective order 10 and 18. To 

complete this proof, we will now show that there are no amicable graphs of order 

less than 10 and that there are no graphs that can be of order less than 18 that 10 

can be paired with.  

 By theorem 34, there are no amicable graphs of order 1. By theorem 35, 

there are no amicable graphs of order 2, 3, 5, or 7. By the Amicable Divisor Sieve, the 

only possible graphs that a graph of order 4 could be amicably paired with would be 

an amicable graph of orders 1 or 3, neither of which will work by theorems A3 and 

A4. Besides a trivial pairing, the amicable divisors sieve says that the only orders 

that a graph of order 6 could be amicably paired with include orders 3, 4, 7, and 9. 

We have already shown that orders 3, 4 and 7 are not amicable. By the amicable 

divisor sieve, there does not exist an order 9 graph that can be paired with an order 

6 graph since there are no non-negative integer solutions for c in the following 

equation:  

1 + 3𝑐 = 6 

Keeping in mind that there are only six different connected graphs of order 4 

of which only one does not contain P2 as a subgraph, by the amicable divisor sieve, 

the only possible orders that an amicable graph of order 8 could be paired with 

include 1, 3, 5, 7, 11, 15, 19, 23, 27. By theorems 34 and 35, we can rule out the 

orders 1, 3, 5, 7, 11, 19, and 23 from having an amicable pairing with a graph of 

order 8. By the amicable divisor sieve, there are no amicable pairings between a 
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graph of order 15 and order 8 since there are no non negative integer solutions for 

c1 and c2 in the following equation: 

1 + 3𝑐1 + 5𝑐2 = 8. 

Similarly, by the amicable divisor sieve, we can conclude that there are no amicable 

pairings between any graphs of order 8 and 27 since there are no non-negative 

integer solutions for c1 and c2 in the following equation: 

1 + 3𝑐1 + 9𝑐2 = 8. 

 By the amicable divisor sieve, if there is an amicable graph of order 9, it can 

only be paired with any graph of the following orders: 1, 4, and 7. From earlier 

results in this proof, we know that none of these orders are able to be paired with 

such a graph. 

  The only orders less than 18 that a graph of order 10 could be amicably be 

paired with, by the amicable divisor sieve, include 1, 3, 6, 8, 11, 13, and 16. By 

theorems 34 and 35, we can rule out the orders 1, 3, 11, and 13. Because there are 

no non-negative integer solutions to the constants in the following equations, the 

amicable divisor sieve rules out pairings between a graph of order 10 with a graph 

of order 6, 8, or 16: 

1 + 2𝑐1 + 3𝑐2 = 10 

1 + 2𝑐1 + 4𝑐2 = 10 

1 + 2𝑐1 + 4𝑐2 + 8𝑐3 = 10    

This completes the proof. ∎  
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Chapter 5  
Future Work 

 

5.1 Possible Topics of Interest 
 

To conclude this paper, we list some topics that may lend themselves well to 

new research projects. The first topic we list concerns an ordering of the total 

number of vertex divisors per order of a graph and is summarized in the following 

question: “If a graph has nonzero c1 total vertex divisors of order n1 and nonzero c2 

total vertex divisors order n2 and n1<n2, then is c1 ≤ c2?” It seems like the answer 

should be no, but we have yet to find a counterexample to this trend, and the binary 

divisor sieve provides a “yes” to this question in the limited case of trees. If the 

answer to this question is in fact yes, then finding a proof would probably make for 

an interesting research project. In fact, if one could find a proof, such a result would 

imply an incredible amount of structure on connected graphs and would hopefully 

generate a lot of interest in this generalization. If the answer to the above question 

is no, then finding a counterexample to the trend would also make for an interesting 

research project, especially a vertex perfect counter example. Furthermore, it would 

be great to classify when the answer to this question is yes and when it is no for 

broad types of graphs. 

Another topic of interest concerns perfect generation. It appears that most 

vertex perfect graphs are able to generate new vertex perfect graphs through the 

technique of perfect generation. The question we pose is this: “using the idea of 

perfect generation, can every vertex perfect graph produce a new vertex perfect 

graph?” If so, finding a proof would make for an interesting research topic and it 



 73 

would also be nice if one could classify “organically” appearing vertex perfect graphs 

(VPGs that are not produced through generation) vs “artificially” generated vertex 

perfect graphs. If vertex perfect graphs exist that makes the answer to the posed 

question “no”, it would be nice to find at least one and classify under what 

circumstances such vertex perfect graphs occur. Conversely, finding circumstances 

under which perfect generation is possible would also be interesting. It may be a 

good idea to investigate this topic in the limited case of trees for extra “proof 

leverage” before confronting all connected graphs. 

A final topic concerning vertex perfect graphs is related to the divisor sieve. 

Every graph that has been found in this project that satisfies the divisor sieve also 

has had a perfect covering. It may be that the converse of the divisor sieve is true: if 

a graph satisfies the divisor sieve, then it has a perfect covering (implying that it is 

then vertex perfect). Either proving this conjecture or searching for some contrived 

counterexample would probably both make engaging research projects. This topic 

may also lend itself well to first being examined in the limited case of trees before 

being extended to connected graphs as a whole. 

Amicable graphs may also show promise as a research topic. At the moment, 

little is known about them besides the few results that have been extended to them 

in this paper. Furthermore, much work is needed in defining and classifying these 

new objects to account for trivial properties (i.e., by our definition of an amicable 

graph, all vertex perfect graphs are technically amicable with themselves). It would 

also be interesting to find a unique property or properties that unifies shared 

amicable pairs.  



 74 

Similar to amicable graphs, another topic we recommend deals with yet 

another generalization of the number theory generalization to graphs. For someone 

looking for a completely uninvestigated idea, mapping multi-perfect numbers to 

connected graphs may make for an interesting research project. In number theory, a 

k multi-perfect number is a positive integer n with the property that its proper 

divisors sum to kn. The analog of a k multi-perfect number is called a k vertex 

perfect graph, and is defined as follows: if the vertex divisors of a graph G can cover 

k copies of G, then G is a k vertex perfect graph. 

The final idea we suggest as a research topic concerns a different 

generalization of perfect numbers to graphs. While the generalization of interest in 

this paper largely maps perfect numbers to the vertices of graphs (hence the name 

vertex perfect graph), another generalization has been proposed that maps perfect 

numbers to the edges of graphs. The graph theoretic analog of a perfect number in 

this other generalization is referred to as an edge perfect graph. We define an edge 

perfect graph as a connected graph that can be covered by its edge divisors. An edge 

divisor D of a graph G is then a graph with that property that multiple copies of D 

can cover G (in this case, the multiple copies of D can share vertices but not edges, 

an important difference between the two generalizations). The following image is of 

an example edge perfect graph P7 shown with it being covered by the set of its edge 

divisors: 
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Figure 39. 
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Appendix 1 
 

The Vertex Perfect Graph Catalogue 
 

Order VPG Exist Order VPG Exist Order VPG Exist 
1 No 35 ? 69 No 

2 No 36 ? 70 ? 

3 No 37 No 71 No 
4 No 38 No 72 Yes 

5 No 39 No 73 No 
6 Yes 40 Yes 74 No 

7 No 41 No 75 No 

8 No 42 Yes 76 ? 

9 No 43 No 77 ? 

10 No 44 ? 78 Yes 
11 No 45 Yes 79 No 

12 Yes 46 No 80 Yes 
13 No 47 No 81 No 

14 No 48 Yes 82 No 
15 No 49 No 83 No 

16 No 50 No 84 Yes 

17 No 51 No 85 ? 
18 Yes 52 No 86 No 

19 No 53 No 87 No 
20 Yes 54 Yes 88 ? 

21 Yes 55 Yes 89 No 
22 No 56 Yes 90 Yes 

23 No 57 No 91 ? 

24 Yes 58 No 92 ? 
25 No 59 No 93 No 

26 No 60 Yes 94 No 
27 No 61 No 95 ? 

28 Yes 62 No 96 Yes 
29 No 63 No 97 No 

30 Yes 64 No 98 ? 

31 No 65 ? 99 ? 
32 No 66 ? 100 ? 

33 No 67 No   
34 No 68 No   
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Appendix 2 
 
 

The Vertex Perfect Tree Catalogue 
 

Order VPT Exists Order VPT Exists Order VPT Exists 
1 No 35 No 69 No 

2 No 36 No 70 No 
3 No 37 No 71 No 

4 No 38 No 72 Yes 
5 No 39 No 73 No 

6 Yes 40 Yes 74 No 

7 No 41 No 75 No 
8 No 42 No 76 No 

9 No 43 No 77 No 
10 No 44 No 78 No 

11 No 45 No 79 No 
12 Yes 46 No 80 Yes 

13 No 47 No 81 No 

14 No 48 Yes 82 No 
15 No 49 No 83 No 

16 No 50 No 84 Yes 
17 No 51 No 85 No 

18 No 52 No 86 No 
19 No 53 No 87 No 

20 No 54 No 88 No 

21 No 55 No 89 No 
22 No 56 Yes 90 Yes 

23 No 57 No 91 No 
24 Yes 58 No 92 No 

25 No 59 No 93 No 
26 No 60 Yes 94 No 

27 No 61 No 95 No 

28 Yes 62 No 96 Yes 
29 No 63 No 97 No 

30 Yes 64 No 98 No 
31 No 65 No 99 No 

32 No 66 No 100 No 
33 No 67 No   

34 No 68 No   
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Appendix 3 
 

Examples of Vertex Perfect Graphs for Established Orders 
 

|𝐺| = 6 
See figure 6. 

 
|𝐺| = 12 

See figure 7. 
 

|𝐺| = 18 
See figure 12. 

 
|𝐺| = 20 

 
Figure 40. 

 
|𝐺| = 21 

 
Figure 41. 
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|𝐺| = 24 

 

 
Figure 42.  

 
|𝐺| = 28 

See figure 6. 
 

|𝐺| = 30 

 
Figure 43.  

 
|𝐺| = 40 

 
Figure 44. 
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|𝐺| = 42 

 
Figure 45. 

 
|𝐺| = 45 

 
Figure 46. 
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|𝐺| = 48 

 
Figure 47.  

 
|𝐺| = 54 

 

 
Figure 48.  
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|𝐺| = 55 

 
Figure 49. 

 
|𝐺| = 56 

 
Figure 50.  

 
|𝐺| = 60 

 
Figure 51. 

 
|𝐺| = 72 

 
Figure 52.  
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|𝐺| = 78 

 

 
Figure 53. 

 
 
 

|𝐺| = 80 

 
Figure 54. 
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|𝐺| = 84 

 
Figure 55. 

 
 

|𝐺| = 90 

 
Figure 56. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 85 

 
|𝐺| = 96 

 

 
Figure 57.  
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