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ABSTRACT
A STUDY OF SEMIREGULAR GRAPHS
By
Alison Northup
May, 2002

Advisor: Erich Friedman
Department: Mathematics and Computer Science

Just as aregular graph is onein which each vertex is distance 1 away from exactly the same number
of vertices, we define asemiregular graph to be agraph in which each vertex is distance 2 away from exactly
the same number of vertices. If each vertex of asemiregular graphis distance 2 away from n vertices, we say
that that graph isn-semiregular. We give examples of semiregular graphs, describe the barbell class, and
describe how the property of semiregularity relates to other properties of graphs, such asregularity, vertex
transitivity and symmetry. The classes of 0-semiregular graphs, 1-semiregular graphs, 2-semiregular graphs
and the semiregular trees are fully classified. In addition, an algorithm for determining whether agraphis

semiregular is presented.



CHAPTER 1
GRAPH THEORY CONCEPTS

1.1. GRAPHS
In graph theory, a graph is defined to be a set of points called vertices that are connected by

linescaled edges. Figure 1 shows some examples of graphs under this definition.

/N

Figurel

We will consider only smple graphs; that is, there is a maximum of one edge connecting any two
vertices, and there can be no edges connecting a vertex to itself.

The vertex set of agraphisthe set of dl the verticesin the graph. Likewise, the edge set of a
graph isthe set of al edgesin the graph. The vertex and edge sets of a graph G are denoted
V(G) and E(G), respectively. The degr ee of avertex v, denoted deg(v), is the number of edges
that contain v.

A path between two vertices a and b is a sequence of vertices and edges that lead from ato b in
which no vertex isrepeated. The length of apath is the number of edgesthat it contains. Figure

2 shows a path of length 5 from a to b.

Figure2



A graph of n vertices that is just asingle path is denoted P,. The distance between two vertices
a and b is the number of edges contained in the shortest path between a and b. Referring back to
Figure 2 a and b are distance 1 apart.

A graph H isasubgraph of agraph G if the vertex set of H is contained within the vertex set of
G and two vertices are connected in H only if they are connected in G. Figure 3 shows a graph,

G, and one possible subgraph, H.

Figure3
When two vertices are connected in H if and only if they are connected in G, then H iscalled an
induced subgraph of G.
The complement, G,of agraph G has the same vertex set as G and vertices v, and v, are

connected in G if and only if they are not connected in G. Figure 4 shows a graph and its

complement.

0]
I

I G-

Figure 4
1.2. PROPERTIES OF GRAPHS
A graphisconnected if there exists a path connecting any two vertices of agraph. Otherwise,
the graph isdisconnected. Each connected part of a disconnected graph iscaled a

component. Figure 5 shows both a connected and a disconnected graph.
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Connected Disconnected

Figure5

A graphisregular if every vertex in the graph has the same degree. If al the vertices of a graph

have degree n, we cal that graph n-regular. Figure 6 shows some examples of regular graphs:

2-regular 3 -regular 4-regular

Figure 6

A cycle isapath of length 2 or more with its endpoints joined by an additiona edge. A cyclewith
n verticesis caled an n-cycle. The cycles are exactly the 2-regular graphs. Figure 7 shows

some examples of cycles.

4-cycle 5-cycle
Figure7

A graphiscdled tree if it is connected and contains no cycles as subgraphs. Figure 8 shows two

examples of trees.



Figure8

A graphiscdled complete if every vertex is connected to every other vertex in the graph. K,

denotes the complete graph with n vertices. Figure 9 shows some examples of complete graphs.

K, Ks

Figure9



CHAPTER 2
SEMIREGULAR GRAPHS

2.1. INTRODUCTION
A graph is semiregular if each vertex in the graph is distance 2 away from exactly the same
number of vertices. If each vertex is distance 2 from n other vertices, we cal that graph n-

semiregular. Figure 10 shows some examples of semiregular graphs.

2-semiregular 3-semiregular 6-semiregular

Figure 10
Semiregular graphs are a natural extension of the idea of regular graphs. Although extensive
literature exists on regular graphs, semiregular graphs have been much less studies. A similar idea
appears in “Distance Degree Regular Graphs’ by Bloom, Kennedy and Quintas.
Define degy(v) to be the number of vertices that are distance 2 away from v in agiven graph. It
is obvious that the union more than one n-semiregular graph is aso n-semiregular, so we will limit
our discussion to connected semiregular graphs.
2.2. THEBARBELL CLASS
The n-barbell graph isformed by taking a connected pair of vertices, v; and v, and then
connecting n new vertices to v, and then n new verticesto v,. Figure 11 depicts several of the

smaller barbell graphs.

10



0-barbell 2-barbell 4-barbell

Lo

Figure 11
Theorem 2.1. The n-barbell graph is n-semiregular for al n3 0.
Proof. Let G bethe n-barbell graph. That is, G isformed by a central line segment connecting
vy and v, with n other vertices connected to each of v; and v,. Let v beavertexin G. For
n=0, GisOsemiregular. For al other n, there are two possible cases:
Case 1. visapoint on the central line segment of G. Without loss of generality, say that v is
vi. There are n +1 vertices connected to v, induding v.. There are also n other vertices
connected to v,, and v is distance 2 from each of them. We have considered al the vertices
of G, so degy(V) = n.
Case 2. visanendpoint of G. Without loss of generality, say that v is connected to vi1. Vv is
distance 2 from v, and the other n-1 other vertices connected onto v;. Vv isdistance 3 from
the n vertices connected onto v,. We have considered al the vertices of G, so
deg(v) = (n-1)+1=n.
Thus, deg(v) = n for every vertex vin G, and G isn-semiregular. &
This theorem leads us to the solution of a natural question that arises concerning semiregular
graphs. Isthere an n-semiregular graph for every n?

Corollary 2.2. There exists a n-semiregular graph for every n3 0.

11



Proof. For any n3 0, the n-barbell graph is n-semiregular. @&

2.3. VERTEX-TRANSITIVITY

An automor phism of agraph G is a one-to-one, onto map f:V(G)® V(G) such that {uy}1 E(G)
iff {f(u),f(v)}1 E(G). A graph G isvertex-transitive if for al pairs of vertices v; and v, of G
there is an automorphism of G mapping v, to V.

Lemma 2.3. If f isan automorphism of a connected graph G and a, b are vertices of G, then the
distance between a and b is the same as the distance between f(a) and f(b).

Proof. Let G beagraph, and let a and b be verticesof G. Let f:V(G)® V(G) bean
automorphism of G. Say that a and b are distance d apart. Then thereisapath a, vy, va,......, Vg
1, b (where v, T V(G), " i) that haslength d. Now consider the vertices f(a), f(v1), f(V2),.....,
f(vga), f(b). By definition of automorphism, the connections between vertices are preserved
under the automorphism, so the sequence f(a), f(vi), f(v2),....., f(vg.1), f(b) forms a path of length
d from f(a) to f(b). Therefore, the distance between f(a) and f(b) isat most d. Say that thereis
apath f(a), uy, Uy,....., Ung, f(b) in G such that the length of the pathisn, wheren <d. Sincef is
a bijection we can rewrite this path as f(a), f(wy), f(wy),....., f(Wn.1), f(b) for some wy, Ws,...., Whq
inG. Then a, Wy, Ws,...., Wy.1, b defines a path of length n in G, which contradicts our assumption
that a and b are distance d apart. Thus, f(a) and f(b) are the same distance apart as a and b.®
Theorem 2.4. All connected vertex-transitive graphs are semiregular.

Proof. Let G be a connected vertex-trangitive graph, and let vy, v, be vertices of G. Say that v,
is distance 2 away from exactly n other vertices, namely, uy, Uz, Us,...., U,. Now, since G is
vertex-trangitive, there exists an automorphism, j , that maps v, onto v;. Sincej isan
automorphism, there must also be vertices Wi, Wy, Wa,...., Wil V(G) such that j (w) = ui.  Since,

according to Lemma 2.3, distance is preserved by automorphism,



d(vy, i) = d(v2, W)
2=d(vo, W)
Thus, v, is dso distance 2 away from at least n other vertices, namely, wiy, Wo, Wa,....Wn. Say that
Vv, isdistance 2 from an additional vertex, x. Sincef isabijection and because distance is
preserved by automorphism, there existsayl V(G) that is not any of the u; and that is distance 2
from vi. That contradicts our assumption that uy, Uy, Us,...., Uy are the only vertices that are
distance 2 from v;. Thus, v, is distance 2 away from exactly n other vertices. Sincethisistrue

for any v, vol V(G), G must be n-semiregular. &

13



CHAPTER 3
CLASSIFICATIONS

3.1. THE O-SEMIREGULAR GRAPHS

Now that we know some basic truths about semiregular graphs, we shall move on to classifying
certain types of semiregular graphs. First, we shal fully classify the O-semiregular graphs.
Theorem 3.1. A connected graph is 0-semiregular if and only if it isacomplete graph, K, for
n3 1

Proof. Let G be a connected O-semiregular graph with n vertices, n® 1. The distance between
any two vertices of G must be 1, because a dstance greater than 1 would mean that G would
have two vertices that were distance 2 apart, and G would therefore not be O-semiregular. A
connected graph with n vertices in which al vertices are at distance 1 from all other verticesis
the complete graph, K.

Let G be the complete graph, K., for n® 1. Then for any vertex vin G, v is not distance 2 away
from any other vertices. Thus, G is O-semiregular. &

3.2. THE 1-SEMIREGULAR GRAPHS

Now we shall classify the 1-semiregular graphs, but first we will need alemma.

Lemma 3.2. Every finite 1-semiregular graph has an even number of vertices.

Proof. Let G be a 1-semiregular graph. Let v be avertex of G. Since G is 1-semiregular, v
must be distance 2 away from exactly one other vertex in G. Cal it u. Likewise, u isdistance 2
away from v alone. Thus the vertices of G can be divided into pairs that are distance 2 awvay
from each other, but not from any other vertex. If G had an odd number of vertices, there would
be a vertex that was not part of a pair, and therefore not distance 2 away from any other vertex.
Then G would not be 1-semiregular. So G must have an even number of vertices. &

Now we are ready for the classification of the 1-semiregular graphs.

14
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Theorem 3.3. A connected graph is 1-semiregular if and only if it is P, or gl |RZE’ forns3 2.
i=1

Proof. Let G be aconnected 1-semiregular graph. G must have at least four vertices, because it
must have an even number of vertices (according to Lemma 3.2), and the only connected graph
with two vertices, P,, isnot 1-semiregular.
Case 1. Every two vertices of G are either distance 1 or 2 apart. Say that G has mvertices,
m3 4. According to Lemma 3.2, mmust be even, and its vertices can be divided into pairs
that are distance 2 apart from each other. Since, as stated, the only possible distances
between two vertices of G is 1 or 2, each vertex must be distance 1 away from every vertex
except itspair. Thus, the graph is completely connected except that the pairs are not

connected. The complement of the graph is then a union of (at least two) P, graphs. Thus G

"0
can be written in the form gURZE forn3 2.
i=1

Case 2. There are vertices of G that are at distance greater than 2 from one another. That
means that there exists a pair of vertices, v, and v, that are distance 3 apart, as shown
below:

Vi Vo V3 V4

o —&——0

Figure 12

What we have here is actually a 1-semiregular graph (P4). We must check to seeif we can
expand this graph. First we should check to see if any more edges can be added to the

vertices we dready have. There are only two distinct possibilities:

V1 Vo V3 Vg Vi Vo V3 Vg

Figure 13
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In both cases, v; isno longer distance 3 from v,, which contradicts our assumption. So no
more edges can be added among the vertices v, through v,. Now we examine what happens
when anew vertex isadded to G, cdl it vs. There are only two cases that must be examined.

Case 2a. We connect vs to an endpoint; say Vvi.

Vi Vo V3 Vg4
Vs
Figure 14

As can be seen in the figure above, the addition of vs causes v, to be distance 2 away
from both v, and vs. We cannot, by adding edges, make the distance between two

vertices any longer, so we must make v, to be only distance 1 away from vs.

Vi \'Z V3 Vg
Vs
Figure 15

Now we have the problem that v3 is distance 2 away from more than one other vertex,

namely v; and vs. We cannot connect vs to v;, SO we must connect v; to Vs.

Vi Vo V3 Vg
Vs
Figure 16

In the same manner, it can be concluded that v4 and vs must also be connected.

V1 Vo V3 Vg
Vs

16



Figure 17
But now v; is only distance 2 away from v,, which contradicts our assumption.
Case 2b: We connect vs to a non-endpoint; say v,. Just asin Case 2a, this causes v; and
v to be distance 2 away from two vertices, so we must connect both v; and v3 to vs.
Now v, is distance 2 away from two other vertices, so we connect v, to vs. Again, there

is now apath of length 2 between v; and v, so we have reached a contradiction.

"0
Assumethat G is either P, or gURZB’ forn3 2. If G is P4, then G is connected and
i=1

1-semiregular. Say that G is a complement of a union of at least two P,’s. Then, as seen above,
each vertex of G is connected to (distance 1 from) every other vertex except its ‘pair’. Since
n3 2, G must have at least four vertices. Let v; and v, be any of the pairs of verticesin G, and
let v be athird vertex. Then v must be connected to both v; and v», creating a path of length 2
from v, to v,. Since they are not connected, v; and v, are indeed distance 2 from each other.
Thus G is 1-semiregular. It dso followsthat G is connected, since v; is connected to all vertices

except vy, and there is apath from vy to vo. &

2 .
0

Figure 18 shows some examples of graphs of the form 8 R, E .

i=1

Figure 18
3.3. THE 2-SEMIREGULAR GRAPHS
Now that we have seen the classifications of the O- and 1-semiregular graphs, we shall move on

to the classification of the 2-semiregular graphs, which is a much more complicated problem.

17



Theorem 3.4. A connected graph is 2-semiregular if and only if it isan n-cycle or the

complement of an n-cycle for n3 5, the complement of the union of at least two digoint cycles, or

one of the seventeen graphs below:

(€)

(h)

(k)

(n)

()

X (b) { ] (©

(f)

(0

(i)

P

(0)
(@

Figure 19
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Proof. Let G be aconnected 2-semiregular graph. We break up the possibilities for G into two
cases. First, that G contains an endpoint. Second, that G does not.
If we know that G has an endpoint, we can start with that endpoint, and try al the possible cases.
See Appendix A for afull exploration of all possible cases. We conclude that graphs (a), (b), (c),
(d), (e), (f), (9), (h), and (i) in Figure 19 above are the only possibilities for a connected 2-
semiregular graph that has an endpoint. Secondly, assume that G does not contain an endpoint.
We will divide this possibility further into two cases:

Case 1. G contains no endpoint, and the distance between any two vertices of G is a most 2.

That means that every vertex vin G is connected to every other vertex in G except for the

two vertices that it is distance 2 away from. Now consider G. G must be a 2-regular
graph, but it might have more than one component. Recall that the only possible connected 2-
regular graphs are the cycles. Thus G must be either a cycle or the union of two or more
digoint cycles. G cannot be a 3-cycle or a 4-cycle, because then G would be disconnected.
Case 2: G contains no endpoint, and there exist verticesu and v of G that are at least
distance 3 apart. See Appendix B for afull exploration of al the possible cases. We
conclude that the n-cycle graphs for n3 6 and the graphs (j), (k), (1), (m), (n), (0), (p), and ()
in Figure 19 are the only possibilities for a connected 2-semiregular graph that has no endpoint
and contains two vertices that are at least distance 3 apart. (Notice that the case that G isa
5-cycleis contained in Case 1, because the complement of a 5-cycleisitsef a5-cycle)

If Gisan n-cycle for nd 5, then G is obvioudy connected and 2-semiregular. If G isthe

complement of an 5-cycle, then G isitself a5-cycle, and is covered by the previous case. If Gis

the complement of an n-cycle for n2 6, then every vertex in G is connected to all but two of the

other vertices. Consider avertex vin G that is not connected to v; or v,. Additiondly, v; isnot

19



connected to u; and V- is not connected to uy, where neither u; nor u, isv. But G has at least six
vertices, so G must contain avertex u that is connected to v and v; and v,. Thusthereis apath
of length 2 between v and v; and between v and v,. Thus degx(v) = 2, meaning G is 2-
semiregular. Furthermore, since v is connected to al vertices except v, and v,, G is connected.
Now consider the case that G is the complement of the union of at least two cycles. Just asin the
case that G was the complement of a cycle, each vertex v of G must be connected to al but two
of the other verticesin G. Let u be avertex that was part of a different cycle than v before the
complement was taken. Thenin G, u must be connected to both v and the two verticesthat v is
not connected to, creating paths of length 2 between them. Again, this causes the graph to be
connected.

The seventeen sporadic examples can be checked individually for 2-semiregularity. &

3.4. THE SEMIREGULAR TREES

We will now classify some semiregular graphs by a different type of property.

Theorem 3.5. A finitetreeis semiregular if and only if it is P, or amember of the barbell class.
Proof. Recall that by definition, trees are connected. Let G be afinite semiregular tree. If G

has just one point (Py), it isa0-semiregular tree.
[}

Figure 20
Now consider the case that G has at least two points. Since G isafinite treg, it must have an

endpoint. Cdl itv. Vertex v must be connected to exactly one other vertex, which we will cal x.

X

\'

Figure 21
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x isthe only vertex that v is distance 1 from, so v is distance 2 away only from those vertices
connected to x. Since G isn-semiregular, v must be distance 2 away from n other vertices, so

there must be n other vertices connected to x. Call them y, v, Y3,..., Yn.

Yi Y2 Va3 Y4 ... Yn

Ve
Figure 22
Now:
v isdistance 2 away from n other vertices (Y1, Y2, Y3,---, Yn)-
Each y-vertex is distance 2 away from n other vertices (the other y-verticesand v).
However, x is not distance 2 away from any other vertices.
We cannot connect v to any other vertices, o, in order to solve this problem, we have to
connect new vertices onto one or more of the y-vertices.
Case 1. We connect the n new vertices to a single y-vertex.
Without loss of generdlity, say that the n new vertices are all connected to y;. Call the new

vertices zy, 2o, Za,..., Z,. Now we have:

Z b Iz Ly ...... Zn
Yo V3 Ya ... Yn
N
X
ve
Figure 23
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v isdistance 2 away from n other vertices (y1, Y2, Y3,-.-, Yn)-

x isdistance 2 away from n other vertices (z, 2o, z3,..., Zy).

Each y-vertex is distance 2 away from n other vertices (the other y-verticesand v).

Each z-vertex is distance 2 away from n other vertices (the other z-vertices and x).
So thistree isn-semiregular. It isthe n-barbell graph. We cannot connect any more vertices
to the z-vertices, because that would make y; distance 2 away from more than n vertices.
Case 2. We connect the n new vertices to more than one of the y-vertices. Without loss of
generdity, assume that mof the new vertices are connected to y;, and the remaining n-m of

the new vertices are connected to other y-vertices.

L D 3 4. Zm Zmir Zme2 ... Zv1 4o

\'

Figure 24
It can be seen that z is now is distance 2 from only mother vertices, namely, z,, zs, Zs,..., Zm
and x. Since mxn, our graph isnot n-semiregular. We must seeiif it is possible to connect

other verticesto z;, making paths of length 2.



Ve

Figure 25
That does not work because it causes y; to be distance 2 from more than n other vertices.
We have aready stated that P; is a semiregular tree. We have seen that the barbell is

semiregular, and the barbells are, by definition, trees. &

23



CHAPTER 4
MORE ON SEMIREGULAR GRAPHS

4.1. SYMMETRY
One way to think of the symmetries of a graph is by considering the number of automorphisms
that the graph has. Every graph has at least one automorphism: the identity automorphism. Every
automorphism aside from that could be considered a symmetry of the graph. We could then say
that a graph is completely nonsymmetric if it has no automorphisms other than the identity
automorphism.

All of the examples of semiregular graphs that we have seen until now have some
symmetry. One might conjecture that every semiregular graph has some symmetry, but that is not
the case. Consider the graph in Figure 26. The numbers within the faces of the graph represent

the size of the cycles that determine the faces.

Figure 26

One can see that in any automorphism of this graph, the positions of the 18-cycle and the 12-cycle
arefixed. That causes the 15-cycle and the 9-cycle that are adjacent to both of them to be fixed,

and that in turn fixes the entire graph.

24



4.2. ADDING EDGES

It is an interesting property of semiregular graphs that in some cases a single edge can be added
to an n-semiregular graph without changing the n-semiregularity of the graph. This property is
never true with regular graphs. Figure 27 shows an example of this phenomenon. Both figures

are 2-semiregular graphs.

< ><

Figure 27

Lemma 4.1. When an edge is added between two vertices a and b, the vertices that are
distance 2 away from a given vertex in the graph will not change except possibly if that vertex is
a, b, or avertex adjacent to a or b.

Proof. Consider a connected graph G that contains vertices a and b, which are not connected by
an edge. Now, let G¢be exactly the same as G, but with an edge added between aand b. Let c
be avertex in G that is distance at least 2 away from a and from b. Any vertex that c is distance
2 away fromin G will dill be distance 2 from ¢ in G¢ because the addition of an edge could not
cause it to be any farther away, and because a distance less then 2 would be a distance of 1, but
we did not add an edgeto c. We must also check that ¢ doesn’t become distance 2 away from
any vertex in G¢that it was not aready distance 2 away fromin G. Assumethat in G¢ c is
distance 2 from a vertex that it was not distance 2 fromin G. We shal call that vertex g. That
means that thereis apath c, f, g, for some vertex f in G& Now, f cannot be equal to a or b,
because we said that ¢ was distance 2 from aand b. Sincef is neither a nor b, the edges
between ¢ and f and between f and g must dso exist in G. Therefore, g must be distance 2 from

cin G aswdll.
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Theorem 4.2. If Gisan n-semiregular graph, and a and b are verticesin G that are not joined
by an edge, then a and b can be connected without changing the n-semiregularity of G iff ais
distance 2 away from every vertex connected to b, and b is distance 2 away from every vertex
connected to a.

Proof. Let G bean n-semiregular graph, with a and b verticesin G that are not connected. Let
a be distance 2 away from every vertex connected to b and b be distance 2 away from every
vertex connected to a. If aand b are distance 2 away from each other, then there isa vertex ¢
that is distance 1 from both a and b, which contradicts our assumption. Therefore, a and b are at
least distance 3 apart. Now, consider connecting vertices a and b with an edge. Lemma4.1 tells
us that we need only concern ourselves with a, b and the vertices that are adjacent to a or b to
determine whether the graph is still n-semiregular.

Consider vertex a. After the edge is added, any vertex originaly connected to a remains distance
1froma. Verticesa and b are more than distance 2 from each other in G, and distance 1 from
each other after the edge is added. By adding the edge between a and b, a would become
distance 2 away from any vertex adjacent to b. However, a is dready distance 2 from every
vertex connected to b. Thus, after the edge is added, a remains distance 2 away from exactly the
same vertices as beforehand. Likewise, b remains at distance 2 from exactly the same vertices
as before the edge was added.

Now consider g, avertex adjacent to a. By Lemma4.1, any vertex that is distance 2 or more
from a and b is not affected by the addition of the edge. Vertex g is adjacent to a before and
after the edge isadded. By our assumptions, g isorigindly distance 2 from b, and remains so. In
G, g isdistance either 1 or 2 away from every other vertex that is adjacent to a. Since no edge is
added to g, g remains the same distance from these vertices. Now let h be a vertex that is

adjacentto b. If gand h are originadly distance 1 apart, then they remain distance 1 apart. If they
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are originaly distance 2 apart, then they remain distance 2 apart, because no edge was added
between g and h. Assume that g and h were originally more than distance 2 apart, but that after
the edge between a and b is added, they become distance 2 apart. That means that after the
edge is added, thereisapath g, j, h for somej in V(G). Vertex j cannot be either a or b,
because by our assumptions, g must be distance 2 from b, and h must be distance 2 from a.
Therefore the edges between g and j and between j and h must have existed in the original graph.
Therefore, g and h must have always been distance 2 apart. So g remains distance 2 from
exactly the same vertices as before the edge was added.
Say that for a connected n-semiregular graph G, a and b are two non-adjacent verticesin G with
the property that adding an edge between a and b does not change the n-semiregularity of G.
Case 1. Say that a and b are distance 2 apart. After an edge is added between them, a will
remain distance 2 away from al other vertices (besides b) that it was originally distance 2
away from (the distance cannot get longer, nor become 1). This means that unless a
becomes, by the addition of the edge, distance 2 away from exactly one vertex that it was not
already distance 2 away from, a will not be distance 2 away from n vertices, asit needs to be.
When the edge is added between a and b, the only vertices that become distance 2 away
from a that weren't originally distance 2 from a are the vertices that are connected to b but
not to a and are not already distance 2 from a. Thismeansthat in G there must be exactly
one vertex that is connected to b but is greater than distance 2 from a. Call that vertex g.
Now any vertex from which g was origindly distance 2 from, g must still be distance 2 from.
However, g is now distance 2 from a, making g distance 2 from at least n +1 other vertices.
This contradicts our assumption that G isan n-semiregular graph.
Case 22 Say that a and b are at distance more than 2 from each other. That means that there

is no vertex connected to both a and b. Thus, when a and b are connected by an edge, a
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would have to become (if it isn't already) distance 2 away from every vertex that is adjacent
to b. Smilarly, b would become connected to every vertex that is adjacent to a. Now, when
the edge between a and b isadded, a remains distance 2 from every vertex that it was
origindly distance 2 from. Therefore, in order to ensure that a is distance 2 away from only n
other vertices, a must originaly be distance 2 from every vertex adjacent to b. Smilaly, b
must originaly be distance 2 from every vertex adjacentto a. @

4.3 CONNECTIONS BETWEEN REGULARITY AND SEMIREGULARITY

Another natural question to ask regarding semiregular graphs is whether there is any connection

between regularity and semiregularity. The following is a method for transforming an n-

semiregular into an n-regular graph, and visaversa.

Theorem 4.3. If Gisan n-semiregular graph, let G* be defined as the graph with the same

vertex set as G, such that v, and v, are connected in G* if and only if they are distance 2 away

from each other in G. Then G* isn-regular.

Proof. Let G bean n-semiregular graph. Let v beavertex in G. v isthen distance 2 away from

exactly other verticesin G. Now consider vin G*. In G*, v is connected to exactly those

vertices that it was distance 2 away from in G. That is, v is connected to exactly n other vertices.

Sincethisistruefor al vertices, G* isn-regular. @&

Figure 28 shows agraph G and the corresponding G*.

G= G* =

Figure 28

28



Theorem 4.4. If Gisan n-regular graph, let Gdis defined by inserting two vertices onto each
edge of G. Then G¢isan n-semiregular graph.

Figure 29 shows a graph G and the corresponding G¢.

AN/

Figure 29

Proof. Let G bean n-regular graph, and G¢ as defined above. Let v beavertexin G¢. Thenv
may or may not have been avertex in G.

Case 1. If visavertex of G, thenin G vertex v was connected to exactly n other vertices:

...... (n of these)
%
Figure 30
In G¢ we have:
...... (n of these)
v
Figure 31

So v isdistance 2 away from exactly n other vertices.
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Case 2: If visnot avertex of G, then v must have been added in along an edge of G. Say that v
was added to the edge connecting v; to vz in G. Since G is n-regular, we have the following

gtuationin G:

Figure 32

(Note that v; and v, may be connected to some of the same vertices)) Thus, in G¢ we have:

Figure 33

Vertex v is distance two away from exactly n other vertices; those which are highlighted with a
double circle above.

Since degy(v)=n for every vertex vin G¢, G¢isn-semiregular. &



4.4 ALGORITHM FOR DETERMINING SEMIREGULARITY
Once the vertices of agraph G have been labeled from 1 to n, the adjacency matrix of G isthe

N" n matrix where each element a; hasvalue 1if vertex i is connected to vertex j, and value 0

if vertex i isnot connected to vertex j. Figure 25 shows an example of agraph and its

corresponding adjacency matrix.

1 2 01001

10110

01010

6 3 A 1101

10010

10001

5 4
Figure 34

In order for the property of semiregularity to be determined by a computer, it is necessary to have
an appropriate dgorithm. The following agorithm will determine if a graph is n-semiregular for
any n, given the adjacency matrix for the graph.

Algorithm 4.5. To compute whether G is n-semiregular for some n:

1. Start with A, the adjacency matrix of G.

2. Compute A%,

3. Reduce dl dements on the main diagonal to O.

4. Change al eements with value greater than 1 to 1. Call the resulting matrix A*.

5. Compute A*-A.

6. If the number of positive 1's appearing in each row is the same for all rows, then the
graph is semiregular. If each row contains exactly n positive 1's, then the graph is n-
semiregular.

We shall firgt run through an example of this algorithm in use, and then prove the vaidity of the

agorithm.
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Example:
1. Start with adjacency matrix, A. (We use the same graph and adjacency matrix asin

Figure 25 above))

P P O O Fr O
O Ok B O Bk
O O O Fr O
O r O Fr kO
P O FP O O B

Figure 35
2. Compute A, o

A’ =

B P B O W
PN R R WO
OR RPN PR P
N B O b

P O Wk kP
P W o Rk N

Figure 36

3. Reduce dl eements on the main diagond to 0.

~ B B B O O
P N P P OO
[ N S S S o N S N Y

O R kP O R B
P O O R Rk B
P O O R, N

Figure 37

4. Change dl dements with value greater than 1 to 1. Call the resulting matrix A*.
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0 01 11 1
0 01 11 1
110110
111001
11100 1
110110
Figure 38
5. Compute A*-A.
0 0111 1 0 10 0 1 1 0 -11 1 O
o0o0o1111y4_p10110Q9_]-12 00 0 1
110110 0 10100 1 0 0 0 1
11100 1 011010 1 0 0 0 -1
111001 100 10 1 0O 1 1 -1 0
110110 100010 0 1 0 1 O
Figure 39

6. We see that in the matrix above, each row contains exactly two positive 1's, so the graph
in Figure 34 is 2-semiregular.

Proof. The proof of this agorithm relies on the fact that in the square of an adjacency matrix, the
value of the element a;; represents the number of distinct paths of length 2 between the vertices i
andj.
Say that we have a graph G with adjacency matrix A. The pairs of verticesin G fdl into four
categories. 1) i and j are the same vertex 2) i arej are connected by an edge (i.e. there is a path
of length 1 between i and j) 3)iand]j aredistance 2 apart 4) i and j are distinct vertices that are
at least distance 3 apart. Now, for each of these possibilities, we shall consider the value of a;; in
A*-A. For 1) we see that the value of a; in AisOand in A* is0 (since dl the elements of the
main diagonal were made to be 0). Thusthe value of a; in A*-Ais0. For 2), the value for &; in
Aislandin A* iseither O or 1, so the value of a;; in A*-Aiseither O or -1. For 3), the value of &

inAisOandin A* is1, 0 a; =1in A*-A. For 4), the vdlue of a;; in both Aand A* iszero, S0 a;=0



in A*-A, too. Thus we see that the value of a;; in A*-Aiis1if and only if i and | are distinct
vertices that are distance 2 apart. Let n; be the number of 1's appearing in the i™ row of the
matrix. Then n; represents the number of vertices that i is distance 2 away from. If n;=n for al

i, then G isn-semiregular. &



APPENDIX A

2-SEMIREGULAR GRAPHS WITH ENDPOINTS
As stated in the proof of Theorem 3.4, we must do a case-by-case analysis to determine al the
possible 2-semiregular graphs that have an endpoint. Before we begin, it will be useful to prove
two lemmas.
Lemma A.1l. If H isaninduced subgraph of a 2-semiregular graph G, and v 1 V(H), and uy,
Uy,...., Uy are vertices of H that are adjacent to v such that degy(uj) = 2in H, then if G includes
any other vertex, u, connected to v, u is must also be connected to al the u;.
Proof. Since H is an induced subgraph of G, if two vertices are distance 2 apart in H, then they
are also distance 2 apart in G. Consider u;. We know that degp(uj) =2in H. If u; isnot
connected to u in G, then u; is distance 2 from u, and degx(ui) 2 3 in G. But G isa2-semiregular
graph, S0 u; must be connected to u. &
This Lemma s helpful to speed up the process of evaluating al the cases. It aso leads to another
useful lemma.
LemmaA.2. If H isa2-semiregular graph that includes an endpoint, and it is an induced
subgraph of some connected 2-semiregular graph G such that there exists a vertex of G that does
not belong to H, then G cannot contain an endpoint.
Proof. Let H be a2-semiregular graph that has an endpoint, e. Let H be an induced subgraph of
G such that G is a connected 2-semiregular graph with more verticesthan H. Since G is
connected, there must be avertex vin G and not in H such that v is connected to one of the
vertices of H. Since H is a 2-semiregular induced subgraph of G, Lemma A.2 tells us that v must
be connected to all the vertices of H. But that meansthat v is connected to e, S0 eisnot an

endpointin G. Furthermore, since all the vertices of G that are not in H are connected to all the



vertices of H (and there has to be at least two verticesin H, since H is 2-semiregular) none of
them can be endpoints. Thus, G does not contain an endpoint. &

Lemma A.2. shows us that once we have found a 2-semiregular graph with an endpoint, and we
know all the connections between the vertices of that graph, we need not try to expand the graph
further, since any resulting graph will not have an endpoint, and will therefore not concern us.
We must now show that the only 2-semiregular graphs that have an endpoint are graphs (a), (b),
(©), (d), (&, (), (9), (), and (i) in Figure 19.

Proof. Note: Inthefollowing diagrams,®@ will denote a vertex to which nothing more can be
connected, and a dotted line between two vertices denotes that those two vertices are not
connected.

Assume that G is a connected, 2-semiregular graph that has an endpoint, v. Then v must be
connected to exactly one other vertex (the graph with one point is not 2-semiregular). Cal it u.
Furthermore, since G is 2-semiregular, v must be distance 2 away from exactly two other
vertices. That means that u must be connected to exactly two other vertices, which we shal call

aand b. Now consider what we have so far:

Now we must branch off into two separate cases. either a and b are connected by an edge, or
they are not.

Case 1: Verticesa and b are not connected by an edge:




Vertex u must be distance 2 away from two other vertices, call them cand d. ¢ and d cannot
be connected to v, so they must be connected to a and/or b. There are four distinct waysin
which this can be done.

Case 1ac Both ¢ and d are connected to one of a or b, and not to the other. Without loss

of generality, say that both ¢ and d are connected to a.

Thisisa2-semiregular graph; the 2-barbell. Itis(a) in Figure 19. If we assume that ¢
and d are not connected, then we can apply Lemma A.2, and we are done. However, we

must explore the possbility that ¢ and d are connected:

Now degy(c) = 1. But we cannot add any new vertices onto ¢ or d, because that would
cause a to be distance 2 away from more than 2 vertices.

Case 1b: Vertex cisconnected to a but not b, and vertex d is connected to b but not a.

Now there are two cases:. either ¢ and d are connected, or they arenot. If cand d are

connected, then we get:
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b d
Thisis a problem, because now vertex a is distance 2 away from three other vertices.

If ¢ and d are not connected, then we have:

Now vertices a and b are already distance 2 away from two other vertices. Therefore no
other vertices can be added onto ¢ or d. The graph cannot be expanded, and it is not 2-
semiregular, so this leads us nowhere.

Case 1c: Vertex cisconnected to both a and b, but d is connected to b only:

a Cc

b d
Thisisa2-semiregular graph. Itis(b) in Figure 19. Again, if we assumethat c and d are
not connected, then we can apply Lemma A.2 and we are done. However, we must try

the case that ¢ and d are connected by an edge:

This case leads nowhere, because deg(a) = 3.

Case 1d: Both vertices ¢ and d are connected to both a and b:



Thisisa2-semiregular graph. Itis(c) in Figure 19. But we must try the possibility that ¢

and d are connected by an edge:

This case does not lead to anything because it is not 2-semiregular, and if any new
vertices are connected onto c or d, then a will be distance 2 away from more than two
other vertices.

Case 2: Verticesaand b are connected by an edge.

b
Since G is 2-semiregular, vertex u must be distance 2 away from exactly two other vertices.
Just asin Case 1, the vertices that u is distance 2 away from (c and d) must be connected to
a and/or b, and there are four distinct ways in which this can be done:
Case 2a. Both c and d are connected to one of a or b, but not to the other. Without loss

of generdlity, say that both ¢ and d are connected to a, and not to b.

This causes b to be distance 2 away from three other vertices. v, ¢, and d. Thus, G is not

2-semiregular.
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Case 2b. Vertex cisconnected to a but not b, and vertex d is connected to b but not a.

a c
Vv u :* —0
b d

Thisisa2-semiregular graph. Itis(d) in Figure 19. If we assume that ¢ and d are not
connected, then Lemma A.2 tells us that we are finished. However, we must try

connecting vertices ¢ and d with an edge. We get:

a C

b d
Thisgraph is aso 2-semiregular. Itis(e) in Figure 19.

Case 2c. Vertex cisconnected to both a and b, but vertex d is connected only to b.

We see that vertex d is now distance 2 away from three other vertices (u, a, c). We
must then shorten the path between d and one of the vertices that d is distance 2 away
from. We know that d cannot be connected to a or u, so we must add an edge between

dand c.

b d
No other vertices can be connected to a and b. Neither can a new vertex be connected

to ¢ because that would make vertex a distance 2 away from more than 2 vertices.



However, vertex b is distance 2 away from only one other vertex. We must add

something; the only possibility is connecting vertex d to a new vertex, g.

a c
&>—®

v
b d g

This graph is 2-semiregular; it is (f) in Figure 19. We know from LemmaA.2 that we
cannot connect d or g to any new vertices.

Case 2d. Both vertices ¢ and d are connected to both a and b.

a c
b d

No new vertices could be connected onto a or b, because that would cause vertex u to be
distance 2 away from more than 2 other vertices. We must try the two cases of when ¢
and d are and are not connected.

Case 2d(1): If cand d are connected:

gy

The only vertices that can be connected to a new vertex are ¢ and d. Without loss of

generdlity, say that d is connected to a new vertex, g.

a c
v U:Kr
——o
b d g

Vertex g isdistance 2 away from a, b and c. We must then connect g to c:

a C

a4



b d g

This graph is till not 2-semiregular, and the only vertex to which it is possible to

connect a new vertex is g, so wetry that:

This graph is 2-semiregular. 1t is(g) in Figure 19. We cannot add any more vertices.

Case 2d(b): Vertices c and d are not connected.

Vertices ¢ and d are the only ones that could be connected to a new vertex. Without
loss of generality, say that anew vertex, g, is connected to c. Vertex g may or may

not be connected to d. If d and g are not connected:

This graph is 2 semiregular. Itis (h) in Figure 19. No new vertices can be connected

toc,d, org. If dand g are connected:
a c
®
vt N\
AN
b d

V)

g



Thisisa2-semiregular graph. Itis(i) in Figure 19. No new vertices can be
connected to c, d, or g.

Thus, the only possible connected 2-semiregular graphs that have an endpoint are graphs (a), (b),

(©), (d), (&), (), (g9), (h), and (i) in Figure 19.
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