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Mancdais an African game with myriad varigtions. Many historians believe it to be the oldest gamein the
world. Thw word Mancala means "to transfer” in Arabic. Variations of Mancaainclude ti, kpo, wari, azigo,
igisoro, and omweso. Mancaais played on a board with six cups on either side and a base at each end. The
bases are cdled kadahas. The cups are filled with a certain number of stones the value of which depends on
the variation being played. A player moves by taking dl of the stones from one of histher cups and placing,
or sowing, the sones one at atime in adjacent cups until al of the stones have been moved. In some
variaions of the game, if the last gone from a cup is placed in the player's respective base (i.e., the base
towards which the player is moving hisher stones), the player is granted a bonus move and is dlowed to
move again. Otherwise, the player's turn ends. If stones remain after a tone has been placed in the base, the
remaining stones are sown according to the definition of sowing on the opponent's side of the board. The
player that removes dl of the stones from his sde of the board wins the game. We refer to cearing dl of the
stones off one sde of the board as solving the game. Through our investigation, we use generd patternsto
determine mathematical formulas which enable usto predict the outcome of any game based on the initial
positions of the stones as well as determine the best strategy for winning the game.

In order to andyze this verson of Mancaa, we ignore the second player completely and concentrate solely
on determining the number of moves required to clear dl of the stones off a side depending on the stone
placements, i.e., the pogitions containing stones and the number of stonesin each of those positions. We aso
extend the board to include an infinite number of cups so asto facilitate the discovery of generd formulas. In
order to standardize our andys's, we number the cups from the base as positions 1,2,3, €tc.

We will begin by congtructing al the ston placements for the first m cups (where the mth cup is non-empty)
which can be solved in one move. We let u(n) be the number of sonesiinitidly in the nth cupin sucha
configuration. We let v(n) be the number of moves made from the nth position. We will recursively define
these values of u(n) and v(n) by using the vaues for these variables dready determined for positions greater
than n. We let w(n) be the sum of v(i)'sfor dl i'sfrom (n+1) to m. Hence w(n) is the number of moves made
from positions greater than n.

Theorem 1: u(n)=(n-w(n)) mod n.

Proof: Each move made from a position greater than n adds one stone to the nth cup. Thus, the number of
gonesin the nth cup a any given timeis u(n) plus the number of moves made from postions gregter than n
up to that time. By definition, in order to make a bonus move, the number of stones in the nth cup must equd
n. Thus, in order to clear dl of the stones on the board, u(n)+w(n) must equal a multiple of n. Therefore, u
(n)-(n-w(n)) mod n.

If u(n)=0, ether zero or N may be used. while these two dternatives lead to two different sione placements,
both placements can be solved in one move. The mth cup must contain m stones since it must be non-empty
and w(m)=0. Any number of stones may be used in the first cup since al possible values are equivdent to
zeromod 1. Thiswill be proved as Proposition 2.

Theorem 2: v(n)=the quotient of (u(n)+w(n)) mod n=(u(n)+w(n))/n.
Proof: Each time the number of sonesin the nth cup equas n, one move is made from this cup. Since u(n)
+w(n) equas the maximum number of sonesin the nth cup, v(n) equd the quotient of (u(n)+w(n)) mod n

which is the number of times the nth cup contains n sones. Since u(n)+w(n) must equa amultiple of nin
order to clear dl of the stones off of the board, v(n) must dso equd (u(n)+w(n))/n. Since the mth cup
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contains m stones and w(m)=0, only one move is made from that pogtion. Thus v(m)=1.

To illugtrate these concepts, we will demongtrate how these theorems are applied to the case where m=7.
We know that the seventh cup must contain 7 stones. Thus, u(7)=7. We dso know that v(7)=1. Using these
vaued, we see that u(6)=(6-v(6)) mod 6. Since the one move made from the seventh position is the only one
made from a position greater than 6, w(6)=1. Thus, u(6)=(6-1) mod 6=5. We also see that v(6)=

(5+1)/6=1. This additiona move impliesthat w(5)=2. Thus, u(5)=(5-2) mod 5=3 and v(5)=3+2/5=1.

Hence w(4)=3. u(4)=(4-3) mod 4=1 and v(4)=(1+3)/4=1. Thisimplied that w(3)=4. Thus, u(3)=(3-4) mod
3=2 and v(3)=(2+4)/3=2. Thereforew(2)=6. u(2)=(2-6) mode 2=0. In this case, either zero or two can be
used. If zero is used, v(2)=(0+6)/2=3. If 2 isused, v(2)=(2+6)/2=4. The variable u(1) can have any vaue as
explained above.

Thisismore easly seen using a chart (Table 1) showing the moves made from each pogtion for the case
involving seven cups. Underlined vaued represent a move made from any particular position.

We now examine some propositions together with their proofs.

Propostion 1: If only one bean remainsin the nth cup where the nth cup is the only non-empty postion, n
moves are required to clear the board.

Proof: Since only one soneis on the board, there is only one move which can be made. The stone can only
be moved from position n to position (n-1). Since the base corresponds to position 0, only n such moves are
necessary to remove the stone from the board.

Tablel

|Position Number|@
() EEREED
HAREEEE
HEEREAE
HERRERE
HZRREER
HEEEZNN
HECEEND
[ FRE0
HEERNND
HEIINND
V) [EEERRRR

* As previoudy explained, the number of onesin thefirst position, and therefore the number of moves
made from the first position, does not affect any of the vaues needed to make any of the caculations for the
other pogitions.
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Propostion 2: Unlessthe first cup isthe only cup containing stones, the number of stonesin the first position
does not affect the number of moves required to clear the board.

Proof: If thefirg pogtion isthe only one containing sones, then only one move is possible and necessary to
remove the stones. If the first cup is dso empty, then the board is dready clear. Thus, in this case, the stones
in the first cup cannot be completely ignored without affecting the number of moves to clear the board. Now,
we examine the case where the first postion is not the only non-empty one. By the definition of sowin, the
first pogtion recaeives an additiona stone for each move made from positions greater than n. Thus, only a
move made from the first pogition can clear the board. Since only one move is required to clear thefirst cup
regardiess of the number 0s stones contained in it, the number of stonesin the first cup does not affect the
number of moves required to clear the board. Thus, the number of sonesinitidly in thefirst cup can be
ignored.

We will now determine the number of moves necessary to clear the board when there are only two stones
on the board (see Table 2). The rows and columns represent the placements of the two stones and the
vauesin the table are the number of moves required to clear the stones off the board.

In order to determine the vaued for each space on the data table, we let f(X,y) represent the minimum
number of moves required to clear the board where X,y represent positions containing stones (X<=y).

Table?2

BREETEE
HREETER
AEREETE
EERETER
443]4]3]4]s
5/5]45]145]e
CREREEE

Theorem 3:

{y xodd

fxy)={
{y-1x even

Proof: To prove this theorem, we verify that f holds for smdl vaues of x and y. We have dready shown that
only one move is necessary to clear the board when there are two stones in the first cup. We now examine
the case where one stoneisin the nth position and the other isin the first position. By Proposition 2, we
know that we can treet this case asiif there was only the one stone in the nth cup. By Propostion 1, we
know that n moves are required to clear the board in this case. This alows us to complete the first row and
column of the table.
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Note that the diagonal spaces represent the cases where both stones are in the same cup. By the definition of
sowing, one of the stones is moved two spaces and the other is moved only one space. Thisis equivaent to
aknight move on the datatable. That is, after one move is made from a diagona space, the new stone
placementsiis represented in the space two rows above and one column to the left of the original space.
Since the data table is symmetric about the diagond, this would be the same as moving one row above and
two columnsto the left. For nondiagond spaces, only one of the stonesis moved one space. This means that
amove fromanon-diagonal space resultsin anew podtion that is one space to the left or above the origina

position.
We now assumethat f isvaid for dl vaues of x,y where x+y<=n and prove that it isvdid for x+y=n+1 by
showing that f(x,y) isthe minimum vaue for dl possble moves from (x,y)+1. Frg, welet x=y. This

represents spaces adong the main diagona of the table. As previoudy described, knight moves are made
from these spaces. Thus, we need to show

f(x,X)=f(x-2,x-1)+1

snce one move s required to move the two rows up and one column to the left. If x is odd, then x-2 isodd
and f(x,X)=x=(x-1)+1=f(x-2,x-1)+1. Now, we let x<y. Thisrefersto dl spaces not on the main diagona. As
seen above, moves made from these spaces move one gpace ether above or to the left of the originad space.
Thusf(x,y) must equa min(f(x-1,y),f(x,y-1))+1 in order to be consstent for al vaues of x,y. We show this
dgebraicdly.

{y x-lodd { y-2xeven
f(xy)=1+min ({
({y-1x-leven{ y-1x odd

Since, if X iseven, x-1 isodd and if x isodd, x-1 is even,

((yy-2) xeven
f(x,y)=1+min (
((y-1,y-1) x odd

Thus, if x isodd, f(x,y)=1+(y-1)=y. If X iseven, fox,y)=1+(y-2)=y-1. This showsthat the formulaf(x,y) is
conggent for al values of xy.

Note that snce we are ignoring the possibility that stones left over after a stone is sown in the base can be
sown on the opponents side of the board, we assume that any extra stones remain in the base. however, the
vaues of the positions of these stonesis essentid for the caculation of f(x,y) vaues. Thus, we assgn the base
position the value of 0 and each additiona stone the value -1,-2,-3, etc.

We now examine the case of the stone placements containing three stones. We assign these stones the
vaues x,y, and z where x<=y<=z. We define g(x,y,z) as we defined f(x,y) usng the properties of x,y,z
defined above.

Theorem 4:
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{z x<=2,x+yeven

gixy.2={
{ z-1 otherwise

Proof: Asinthe caseof f, g(x,y,2) represents the minimum number of moves required to clear the stones off
the board. To determine if this theorem holds, we use a proof smilar to that which we use to prove Theorem
3. Wefirg show that g is condstent for smdl vaues of x,y, and z. We then assume that g isvdid for al
vaues x,y,z where x+y+z<=n and then prove that g is vaid for x+y+z=n+1 by showing that g(x,y,z) equds
the minimum vaue for dl movesfrom (x,y,z) plus 1.

Wefirg show that g isvaid for smdl vaues of x,y,z.

Proposition 3: For the three stone case, if one of the three onesisin the first position, it can be treated as
atwo stone case. If two stones are in thefirst cup, it can be treated as a one stone case.

Proof: If welet x=y=1, by Proposition 1 we know that thisis equivaent to the one stone case. We know

that for this case, if the sone isin the zth position, k=z which is consstent with the definition of g. We next
look at the case where x=1. Again by Proposition 1, we know that this case is equivaent to the two stone
case. If yisodd, f(y,2=z=g(1y,2). If y iseven f(y,2)=z-1=g(1,y,2).

We now let x=y=z=3. Since the only move from this placement rewards the player with a bonus move and
resultsin the (1,2) placement. Thus, g(3,3,3)=2=f(1,2). Now let x=y=2. Since amove from position 2
results in a bonus move and the placement (1,z) which is the same as the one stone case where z is the only
non-empty position. Thus, g(2,2,2)=z. If amove is made from the z position, g(2,2,2)=1+9(2,2,2-1)=1+(z-1)
=z. Hence, we seetha g isvdid for dl of these amdl vdues of x,y,z.

We now examine larger values of x,y,z. Wefind that there are four cases within this three stone case.
Case 1l x=y=z
This case corresponds to the stone placement where al three stones are in the same cup. Only one move
can be made from this placement. This move resultsin the placement (x-3,x-2,x-1). Thus, we must show
that

(X, x,X)=1+g(x-3,x-2,X-1)
Case 2: x<y=z
This case corresponds to the stone placement where the stone in the least position is done and the other two
stones are together in the same position with a greater value. Two moves can be made from this placement.
One move transfers the stones from the position (X,y,y) where x<y to the position (x-1,y,y). The other move

trandfers the gones from the same initia position to the position (X,y-2,y-1). Thismoveis smilar to the knight
move encountered in the two stone case. We must show that

gix,y,y)=1+min(g(x-1,y,y),a(x,y-2,y-1)).
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We first examine the case where x+y is even and x<=2. Under these conditions, g(x-1,y,y)=y-1 since (x-1)
+y isnot even and g(x,y-2,y-1)=y-1 since x+(y-2) is even. Thus, g(x,y,y)=1+(y-1)=y which is consstent
with the formula. We now examine the otherwise case. For this case, g(x,y-2,y-1)=y-2 since either x+(y-2)
isnot odd or x>2. The other move is more complicated. If x+y is even, then (x-1)+y is not even and g(x-
Ly.y)=y-1. If x+y isnot even and x>3, then g(x-1,y,y)=y-1. However, if X+y isnot even and x=3, g(x-
1y.y)=y snce (x-1)+y iseven and x-1=2. This case, however, does not affect the calculation of g(x,y,y)
sgnce

min(g(x-1y.y).9(x.y-2,y-1))=y-2
Thus g(x,y,y)=1+(y-2)=y-1 which is a0 congstent with Theorem 4.
Within this case, we find another interesting situation if x=y-1=z-1. For this specia case, we must show that
g(Xx+1x+1=1+min(g(x-1,x+1,x+1),g(X,X,x-1))

snce these are the only two moves possible from this placement. We rearrange the last placement so that the
positions increase numericaly. Now we examine the case where x<=2 and x+y is even. Under these
conditions, g(x-1,x+1,x+1)=x+1. Since (X-1)+x is not even, g(x-1,x,x)=x-1. Thus, g(X,X+1,x+1=1+(x-1)=x
which is congstent with the formula. This case, however isirredevant Snce x+(x+1) can never be even. Now,
if x<=3, g(x-1,x+1,x+1)=x+1 since (x-1)+(x+1) iseven. If x>3. g(x-1,x+1x+1)=x. g(X-1,Xx,X)=x-1 dways
gnce (x-1)+x is never even. Thus, g(X,x+1,x+1)=1+(x-1)=x.

Case 3. x=y<z

This case corresponds to the placement where two stones are together in the position with the least value
and the other stoneis adone in a podtion of greater value. Asin Case 2, two moves are possible from this
placement. One move transfers the stones from the placement (x,y,z) to the placement (x-2,x,z-1). We must
show that g(X,x,2)=1+min(g(x-2,x-1,2),g(x,x,z-1)). We first examine the case where x<=2. Since X=y, X+y is
aways even. Since (x-2)+(x-1) is not even, g(x-2,x-1,2)=z-1. g(x,X,z-1)=z-1 also. Thus, g(x,x,2)=1+(z-1)
=z. Now, we examine the case where x>3. We see that g(x-2,x-1,2)=z-1. Since (x-2)+(x-1) is never even,
we do not find the same specid case asin Case 2. On the other hand, we see that g(x,xx,z-1)=z-2. Thus, g
(X,X,2)=1+min(z-2,z-1)=1+(z-2)=z-1.

Case 4: x<y<z

This case corresponds to the placement where al three stones are in separate positions. Three moves are
possible from this placement. The stones can be transferred from the initid placement to (x-1y,2),(X,y-1,2),
or (x,y,z-1). Thus, we must show that

g(X,y,Z):1+ mi n(g(X- 1,y,Z) 1g(X’y' 112) ,g(X s 1))

As before, we examine the case where x<=2 and x+y iseven. Since (x-1)+y isnot even, g(x-1,y,2)=z-1.
Smilarly, snce x+(y-1) isnot even, g(x,y-1,2)=z-1. g(X,y,z-1)=z-1 dso. Thus, g(x,y,2)=1+(z-1)=z which is
consgtent with the formula. Now we examine the otherwise case. If x<=3 and x+y is not even, g(x-1y,2)=z.
Otherwise, g(x-1,y,2)=z-1. If x<=2 and x+y is not even, g(x,y-1,z)=z. Otherwise, g(x,y-1,2)=z-1. Aslong as
X>2 or X+y isnot even, g(x,y,z-1)=z-2. Thus, the minimum vaue for the otherwise caseis z-2 and g(x,y,2)
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=1+(z-2)=z-1.

In order to more easily recognize the rel ationships between these three stone placements and their
corresponding g(x,y,z) values, we congtruct the following data tables based on severd z valued (see Table
3).

We have categorized stone placements that can be solved in one move (see Theorems 1,2) and found the
minimum number of moves required to solve dl postions with no more than three stones (see Theorems
3,4). Note that in the cases above, the minimum number of moves required to clear the board can aways be
achieved by moving the stones in the position with the greatest vaue. Also note that moving stones from any
position which results in a bonus move ether does not affect this minimum vaue for the stone placement or
lowersit. This observation leads us to the following corollary:

Corallary: The best gtrategy for dl placements with no more than three stones or placements that can be
solved in one move is to do the following: 1) first remove the stones form any position that results in a bonus
move (moving firgt from cups closest to the base), and 2) then move the stones from the position with the
greatest value.

By generdizing these results, we make this conjecture:
Conjecture: For dl possble stone placements, the best strategy to solve the game isto first remove the

stones from any positions that result in a bonus move (proceeding according to increasing position vaue as
described in the corallary) and then move the stones from the position with the greatest value.

Table3
= 2]
g NEE
fif BER
222

=4

HREET
4543

N
1
w

[ ]

[B ][]

[ ][N]

[ ][]

[ ][]

[NIINI[w ][]

(OIS IM=1C ]
[N
MW ]]

[(B[w]S]
[WI[E][w]
(B[]
[Wi[w][w]
[Wilw][S]
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