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 Mobile Ad-hoc networks are self-organized systems of nodes or installations, all 

cooperating to provide network functions such as routing and forwarding. Utilized in open 

environments, mobile ad-hoc networks are vulnerable to attack by malicious nodes, causing harm 

or disorder. These nodes do not reveal their identities while disrupting service. Thus, early 

detection is important. The network may also contain selfish nodes, installations that choose to 

conserve power resources rather than provide network function. Identification of selfish nodes, 

too, is necessary so that functional nodes do not waste resources attempting to communicate with 

them. Malicious node detection has previously been modeled as a Bayesian game with imperfect 

information. In this attacker/defender game the defender is unsure of the type of its opponent and 

must select strategies based on this incomplete information. Malicious nodes attempt to avoid 

detection by masquerading as regular nodes, providing useful network function at interval. This 

small contribution to the network may, however, be entirely necessary in a mobile ad-hoc 

environment with extremely limited resources and selfish nodes. Thus, exploiting the malicious 

node may be a viable option. In this paper we demonstrate that selfish and malicious nodes can be 

successfully identified through our proposed attacker/defender game. In addition we show that 

once identified, a malicious node may be exploited if the benefit it provides to the network is 

greater than the damage accrued. In this paper we propose a more robust model that is capable of 

identifying any type of installation found in a mobile ad-hoc environment. Our technique is more 
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advantageous because it conserve power resources and improves network performance compared 

to previous works. 
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I. INTRODUCTION 

 Mobile ad-hoc networks (MANETs) are self-organized systems in which network 

operation is provided through collaboration of nodes within a neighborhood. Each node agrees to 

perform network functions such as routing and forwarding with other nodes in the network, 

without prior trust. Typically, all nodes are programmed to maximize a particular utility function 

by choosing strategies to maximize a payoff. Usually, a node’s utility function is the benefit that 

node derives from other nodes in the network. That is, providing useful and efficient 

communication between nodes is any individual node’s utmost priority. There may, however, be 

nodes in the network with other utility functions. A selfish node may choose not to forward 

packets as a means to conserving power. This node’s utility function would then be to minimize 

its power usage. This would degrade network throughput, make routing almost impossible, or in 

the worst case immobilize the network as a whole. It is important to note that selfish nodes may 

only choose to communicate with a certain probability, based on the node’s current power 

constraints. They do not necessarily always decline communication. It is possible that there exist 

some nodes in the network whose utility function is to maximize harm and disorder to the 

network. These nodes, called malicious nodes, can mount attacks that compromise individual 

nodes or degrade the overall network performance. All the while, they avoid being caught and 

isolated. Malicious nodes do not reveal their identities, but rather try to conceal them, 

masquerading as traditional nodes.  

 To counter malicious nodes and promote proper network activity, there must be nodes 

that monitor and evaluate their neighbors. Nevertheless, detection and differentiation between 

types of nodes has challenges. First, monitoring neighboring nodes is expensive. Monitoring 

entails a node listen to the channel and process the information sent by nodes under suspicion. 

This consumes both processing and reserve power, thus continuous monitoring is impractical. To 

improve monitoring efficiency, a game-theory based approach is suggested. Given the current 
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state of the channel of communication, games would determine whether a node should monitor or 

not monitor the channel. Second, malicious nodes can disguise themselves. To reduce the 

likelihood of being detected, a malicious node can behave like a regular node and attack the 

network only when it believes it is not being monitored. Moreover, malicious nodes have the 

additional strategy of fleeing to avoid isolation. That way the node can return to its malicious 

behavior with a new location and clean history in the network. This strategy is referred to as “Hit 

and Run” and comes with its own associated cost [9]. That is, the energy spent to change 

locations. Third, the randomness and unreliability of the wireless channel will inflate the 

uncertainty of the monitoring and detection process. In some cases it is nearly impossible to 

determine whether a packet was dropped as a result of wireless error or malicious intent.   

 In any case, detection is not our ultimate goal. We must next determine how to respond to 

malicious and selfish nodes. In most cases, a malicious node is isolated upon detection. However, 

there may be situations in which the malicious nodes can be kept in the network and made use of, 

coexistence. We rely on the fact that a malicious node does not know if it has been identified or 

not. Hence, the node will continue to provide useful network function under the assumption that it 

is avoiding detection. Thus we can exploit the node to improve network throughput as long as the 

benefits to the network outweigh the damage. In a network with limited resources, the benefit 

malicious nodes involuntary supply can be substantial and necessary. These networks have 

limited numbers of nodes and possibly many selfish nodes, unwilling to cooperate. However, this 

gives monitoring nodes the additional task to determining when to terminate its coexistence and 

isolate the opposing node. A malicious node is isolated and banned from the network when the 

damage it inflicts on the network outweigh the involuntary benefit it provides. A selfish node will 

be banned when the likelihood that it will participate in network activity drops below a particular 

threshold.  
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 We model the interactions between nodes as an attacker/defender game of incomplete 

information. The defender, or monitoring node, attempts to glean the type of the attacker: selfish 

or malicious based only on its actions. Game theory approaches are taken to select strategies for 

the defending node based on its current belief of the type of its opponent. Unlike previous work, 

we consider the attacking player to be of either malicious or selfish type. Others, such as Liu et al 

[10] and Wang et al [11] differentiate between nodes of malicious or regular type. They define 

regular nodes as nodes that always choose to participate. We believe that our model is more 

robust as our definition of selfish nodes can include nodes that always participate as well as nodes 

that participate only a portion of the time. Others researchers, consider only opponents which are 

either selfish or not [2-4, 6, 8]. We show that monitoring nodes are able to accurately distinguish 

between selfish and malicious types of nodes and respond accordingly. In addition, nodes will be 

evaluated to decide whether they should be included in the network or banned from all activity.  

 The rest of this paper is organized as follows. In Section II, we discuss recent research in 

this area of work. Section III introduces our proposed Bayesian game of detection. In Section IV 

we derive a Bayesian Nash Equilibrium from our detection game. Section V presents our 

Dynamic Bayesian game. In Section VI we present our simulation and results. Section VI 

discusses a fault tolerant improvement to the model. Finally, Section V concludes the paper.  
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II. RELATED WORKS 

Game theory has proven as an excellent tool for both modeling and solving problems in 

wireless networks. Problems such as agent negotiation [12], routing algorithms [13], risk 

assessment [14], access admission control [17], congestion control [18], and even wireless 

jamming [20] have all been modeled or solved using various game theory techniques.  Roy et al 

[16] provides an excellent survey paper of game theory as applied to network security. The paper 

details the theory behind a number of popular games and reveals examples of how they are used 

in network security. Uses include detecting cyber intrusion, denial of service attacks, and even 

intrusion detection in mobile ad-hoc networks. Another interesting survey paper comes from 

Agrawal and Lingawar [19], who discuss gray hole, wormhole, blackhole attacks, and other 

attacks in mobile ad-hoc networks. Unlike the previous survey paper, Agrawal does not detail 

game theory techniques, but reviews how to analyze and detect various attacks using the tool 

NS2. The most informative survey paper, however, comes from Manshaei et al [21]. They bring 

substantially more detail to the problems solved by game theoretic techniques and introduce a 

number of new topics including security at the MAC layer, cryptography, and anonymity. 

Srivastava et al adds yet another survey of game theory as applied to wireless ad-hoc networks, 

however, presents little information unattainable from the other survey papers [26].  

There has been a great deal of research on understanding the selfish nature of nodes in 

ad-hoc networks. Recall, a selfish node is one that chooses to decline communication with other 

nodes as a means of saving power and self preservation. We contest that it is important to identify 

these nodes since they waste the resources of neighboring nodes attempting to communicate with 

them. Monitoring nodes must evaluate selfish installations, in addition to malicious ones, and 

determine whether they are benefitting or impeding the network as a whole. Komali et al [24] 

discusses the selfish behavior of nodes in ad-hoc and mesh networks and suggests a topology 

control algorithm that examines energy efficiency in the network and forces cooperation of 

particular nodes. Urpi [8] too discusses selfishness in ad-hoc networks and also concludes that 
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forcing communication between nodes is the only effective method of ensuring throughput in the 

network. Rather than forcing communication for selfish nodes, Marden and Effros suggest a 

game theoretic approach [25]. Under their model, the input is the number of wireless 

transmissions required in the problem. The distributed algorithm then determines the best way to 

satisfy the input while minimizing the cost to individual nodes. However, we are not only 

interested in selfish behavior, but malicious behavior as well.   

Several works have studied the incentives nodes have to cooperate with their neighbors 

[1-3]. These works, however, model a selfish or malicious node as never cooperative. This model 

is too simple and inapplicable in real world applications. Many others focus on modeling 

cooperation and selfishness in a network using game-theoretic approaches [4-8]. In these games, 

nodes decide whether to forward or not forward a packet based on a cost and benefit model. Their 

cost being the energy consumption necessary to forward the packet and benefits being improved 

network throughput and collaboration with neighboring nodes. In each, they show that enforcing 

cooperation between nodes can improve throughput, but nodes may exhaust their power storage 

and retreat from the network. These works, however, do not consider the existence of malicious 

nodes capable of disguising their presence by providing useful network function. It is unrealistic 

to consider a malicious node as always attacking or a selfish node as always declining. We must 

consider the multitude of actions these type of nodes may choose to take. Liu and Zang develop a 

game theoretic model in that is capable of inferring the intent, objectives, and strategies of an 

attacker in a wireless ad hoc network [22]. They found that the generality of their model allowed 

for its application in a variety of types of attacks and even tested the system on a denial of service 

attack. We would like to cultivate a similar level of generality in our model, as the type and 

severity of a malicious attack could come in a variety of forms. 

 Li and Wu suggest a dynamic Bayesian game framework to analyze the interactions 

between regular and malicious nodes in MANETs [9]. In this system regular nodes form beliefs 
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to evaluate the type of its opponent, refusing communication with identified malicious nodes. The 

malicious node regularly evaluates the risk of being caught and chooses when to flee and restart 

at another location. The paper, however, considers only interactions between two nodes. Their 

game is not applicable in a multi-user, real-world environment. Liu et al also suggest a Bayesian 

game [10]. In their model the attacker seeks to inflict the most damage without being detected 

and the defender tries to monitor and isolate nodes while conserving energy expenditure. They 

demonstrated that detection is feasible in both static and dynamic Bayesian models, concluding 

that a hybrid strategy is most effective. Theodorakopoulos and Baras present a similar work. 

Their model, however, appears over simplified as it only considers two factors in the decision 

making process: benefit to the network and energy expenditure [23]. Wang et al demonstrates a 

more robust model, though considers only the case of two nodes as do [9] and [10]. Wang 

develops a malicious node detection system played by a regular node and malicious node [11]. 

Both players’ strategies are based on Bayesian games of imperfect information in addition to a 

post-game played by the regular node upon detection to allow for coexistence with malicious 

nodes. Simulation results show that the perfect Nash Equilibrium achieved in the post-game helps 

to extend the length of games and improve the throughput of the network.  

 Unlike previous work, we study the interactions malicious and selfish types of nodes, 

together, in an ad-hoc network. This generalizes the model as every node in an ad-hoc network is 

inherently selfish. That is, every node seeks to maximize its particular payoff function. As well, 

we suggest a method of determining the benefit and damage a particular node inflicts on the 

network so that beneficial selfish and malicious nodes can be utilized to improve the throughput 

of the network.    
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III. GAME MODEL 

 We consider a MANET which contains a number of nodes connected with each other. 

Nodes can dynamically leave or join the network during movement. We assume authentication 

measures are in place, e.g. public-key based authentication. When a node newly joins the 

network, other nodes authenticate the node and set their beliefs toward the newcomer to an initial 

value. We distinguish between three types of nodes: benevolent, malicious, and selfish nodes. 

The actions of each node are rational and are governed by their underlying utility function. A 

rational action may be to refuse cooperation with other nodes if battery constraints become too 

limited. Table 1 presents the types of nodes and their associated pure strategies. 

Table 1: Pure strategy profiles for each type of node 

Type of Node: Pure Strategies: 

Benevolent Monitor, Idle 

Malicious Attack, Disguise 

Selfish Participate, Decline 

 

We define a benevolent node as one which always cooperates in network function and regularly 

monitors the channel. A benevolent node may choose to ban nodes that have been identified as 

malicious if the damage they cause to the network is greater than the benefit they provide. 

Similarly, selfish nodes may be banned from the network for not participating enough. Forcing 

cooperation between benevolent nodes and others allows the nodes more opportunity to update 

their beliefs about opponents. These nodes, therefore, require either extended battery life or a 
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permanent power source. A benevolent node has two pure strategies: Monitor or Idle. Each has an 

associated cost to the node. Monitoring, for instance is a costly measure (e.g., consumes the 

node’s power) and nodes cannot afford to monitor all of the time. We must therefore develop a 

method in which benevolent nodes monitor only part of the time. A node who has evaluated the 

safety of the channel may choose to remain idle and conserve power for a short period. However, 

careful monitoring may reveal a trusted node to in fact be malicious.  

Malicious nodes seek to cause damage and disorder to the network; however they can 

avoid detection by disguising themselves as regular nodes. Thus, its pure strategies are Attack and 

Disguise. A malicious node attacks to waste resources and disrupt network operation. Attacks can 

come in a variety of forms including denial-of-service (DoS) at different network layers, packet 

dropping, and routing disruption at the network layer. We must therefore develop a method of 

measure of how much damage is inflicted by various attacks. Like benevolent nodes, malicious 

nodes form beliefs about other nodes in the network. The malicious node tracks the benevolent 

node’s trust opinion, evaluating the risk of being caught. A malicious node seeks to disguise itself 

if it is monitored by a benevolent node and attack the network if it is not monitored.   

Finally, we are left with selfish nodes. These nodes never intentionally cause harm to the 

network, but may reduce the effectiveness of the network by choosing to not participate with 

other nodes. Thus, the pure strategies for selfish nodes are Participate or Decline. Some nodes 

may choose to never participate in network functions such as forwarding packets and routing. 

These nodes only slow down the network and waste the resources of other nodes attempting to 

communicate with it. Thus, they should be kicked from the network to prevent further waste. On 

the other hand, there may be selfish nodes that always participate in the network. Monitoring 

these nodes would be a waste of resources, so we do so rarely. However, most selfish nodes will 

strike a balance, participating in the network part of the time and retreating within itself the rest of 
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the time. Like the two previous types of nodes, selfish nodes have profit and costs associated to 

their actions.  

To simplify the interactions among the nodes, we consider a two-player game played by 

nodes, i and j. The types of these nodes are private information, not available to the opponent. 

Since the type of each player is hidden, and observation of the opponent is not accurate, it is a 

Bayesian game with imperfect information. Bayesian games are a combination of game theory 

and probability theory that allow incomplete information to be taken into account and influence 

future decisions [9]. In these games, players are allowed to have some private information (e.g., 

the type of the node in question) that affects the progress of the game. Players form beliefs about 

the private information of their opponent and respond accordingly. Their beliefs are represented 

as probability distributions and are updated using Bayes’ rule as new information is learned. 

Figure 1 illustrates the extensive form of the static Bayesian detection game.

 

Figure 1: Extensive form of static Bayesian Detection Game 
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As our detection game will always be played between two nodes with incomplete 

information, we look to a special category of Bayesian game called a signaling game. A signaling 

game is played between a sender and receiver. The sender has a certain type and knows the type 

of the receiver. Based on this information the receiver sends a message. However, the receiver 

does not know the type of the sender and can only observe the messages sent to it. The receiver 

must observe the messages sent to it and determine what actions to take in response. In our 

detection game, the sender, node i, can be malicious with probability α, or selfish with probability 

(1- α). In our detection game the sender knows that the receiving node is benevolent. It also 

knows that the receiving node believes the sender is malicious with probability α. The 

receiver/benevolent node knows only its current belief about the type of the sender and must 

choose a response based on this incomplete information. Once the benevolent node is certain of 

the type of its opponent, it will evaluate the benefit and damage that node causes. If the damage to 

the network is greater than the benefit, the node will be banned. Otherwise, the identified node 

will remain in the network and continue to be evaluated.  

Table 2: Summary of notation used in model 

Symbolic 

Notation: 

Definition: 

Cm Cost associated with monitoring and analyzing the channel 

Ca Cost of mounting an attack against the network 

Cd Cost of providing effective useful network operation 

W Measure of the degree of damage inflicted to the network by malicious 

nodes 

M Measure of the benefit to the network provided by regular nodes 

participating 

S Measure of the benefit of detecting a selfish node 
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To further construct the game we define the following values. Let W refer to the payoff 

of a malicious node if it successfully attack. The cost of mounting such an attack is Ca. In the 

case that a malicious node chooses to disguise itself in the network it will incur a cost of Cd. 

Likewise, regular nodes incur the same cost for providing network function. Let M refer to the 

payoff of a regular node if it chooses to participate in the network at the time it is monitored. For 

the defending node, j, the cost of monitoring the channel is given by Cm. S is the benefit a 

defending node receives from successfully detecting a regular node being selfish. Table 2 

illustrates the notation used to represent the profits and costs of nodal interactions. 

The actions chosen by nodes are given by their action profiles ai and aj for nodes i and j, 

respectively. Hence, for the action profile (ai, aj) = (Attack, Idle), the utility for a successful attack 

by node i is W-Ca. The loss for node j is –W since j is idle and cannot detect the attack. Similarly, 

if the action profile is (ai, aj) = (Attack, Monitor), the attacking node i loses W+Ca. The node 

suffers a loss because it chooses to attack at the same time it is being monitored. The defending 

node j will gain W-Cm since it is monitoring at the time of the attack and thus, detected the 

attack. This can be seen in Table 2, which illustrates the costs and profits associated with the 

interactions between benevolent and malicious nodes. Notice that the payoffs in Table 3 indicate 

that node j benefits the most from playing Monitor if i plays Attack and from choosing Idle if j 

chose Disguise. Similarly, node i benefits the most by playing Attack when j plays Idle and by 

choosing Disguise when j plays Monitor.  

Table 4 indicates the strategic form of our static Bayesian detection game where node i is 

selfish and node j is benevolent. The payoffs indicate that Participate is i’s best response to j 

playing Monitor and that Decline is i’s best response to j playing Idle. Likewise, Monitor is j’s 

best response to i playing Decline and Idle is j’s best response to i playing Participate. We can see 

that if the action profile is (Participate, Monitor) then node j receives a payoff of M-Cd. The node 
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benefits M because it will gain better standing with j for participating in network function. It loses 

Cd for providing that function. The payoff of sender i is M-Cm since it too benefits from useful 

network function and loses power by monitoring. We assume this will always be a positive 

number. That is, M > Cm. This assumption simplifies our later pure strategy Nash Equilibrium. 

Notice that the action profile (Decline, Idle) results in a zero payoff for both nodes. Neither can 

be penalized for simply doing nothing.  

Table 3: Strategic form of detection game where i=malicious and j=benevolent 

 

 
Monitor Idle 

Attack -W-Ca, W-Cm W-Ca, -W 

Disguise -Cd, -Cm -Cd, 0 

 

Table 4: Strategic form of detection game where i=selfish and j=benevolent 

 

 
Monitor Idle 

Participate M-Cd, -Cm M-Cd, 0 

Decline 0, S-Cm 0, 0 
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IV. BAYESIAN NASH EQUILIBRIUM (BNE) ANALYSIS 

 We begin our analysis on the detection game from the extensive form of the static 

Bayesian game as illustrated in Figure 1.  In our attacker/defender game, the attacker would like 

to play a Bayesian strategy to minimize his chances of being detected and the defender would like 

to play a Bayesian strategy in order to maximize his chance of detecting attacks. Since we are 

playing a signaling game, the attacking player, i, knows that the type of its opponent is 

benevolent. Node j, however believes that node i is regular with probability (1-α) and malicious 

with probability α. To solve this game, we are interested in finding the possible Bayesian Nash 

Equilibrium (BNE). We define a Bayesian Nash Equilibrium as a strategy profile in which each 

player’s prescribed strategy is a best response to the strategies of the other players in the Bayesian 

game [27]. In other words, neither player can change strategies and improve their payoff. Nash 

Equilibrium can be reached in either a static context in which players always choose one 

particular strategy or in a mixed context, where players choose strategies with certain probability. 

In a static game, the BNE is the Nash Equilibrium given the beliefs of both nodes.  

 First, we will consider only the pure strategies. If player i plays his pure strategy pair 

(Attack if malicious, Participate if selfish), then the expected payoff of defender j playing its pure 

strategy Monitor is 

                                .     (1) 

Likewise, j’s expected payoff of playing its pure strategy Idle is 

                           .      (2) 

Setting these two equations equal to each other we get  

   
  

  
.         (3) 

Therefore, if,                      , or if   
  

  
, then the best response of player j is to 

play Monitor. However, if defender j plays Monitor, Attack will no longer be the best response 
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for the malicious type of player i, and he will move to play Disguise instead. Therefore, {(Attack 

if malicious, Participate if selfish), Monitor} is not a BNE. But, if   
  

  
, then the best response 

for defender j is to play Idle. If this were the case, then Participate would no longer be the best 

strategy for the selfish type of player and he would move to play Decline. Recall, M > Cm. 

Otherwise, We would have a Bayesian Nash Equilibrium. Thus, {(Attack if malicious, Participate 

if selfish), Idle} is a Bayesian Nash Equilibrium.  

 Now we consider the pure strategy pair (Attack if malicious, Decline if selfish) played by 

player i. The expected payoff of defender j playing its pure strategy Monitor is 

                                     (4) 

and the expected payoff of playing its pure strategy Idle is 

                           .      (5) 

Again, setting these equal to each other gives 

   
    

    
          (6) 

Thus, if                      , or if   
    

    
, then the best response for player j is to 

play Monitor. However, like the previous case, the defender will move to play Disguise and so 

{(Attack if malicious, Decline if selfish), Monitor} is not a BNE. If we have   
    

    
, then the 

best response for player j is to play Idle. This is a Bayesian Nash Equilibrium since the best 

response of player i is to either continue playing Attack, or to continue to play Decline. So 

{(Attack if malicious, Decline if selfish), Idle} is a BNE. 

 We now know that if the malicious player i always plays Attack, then the only Bayesian 

Nash Equilibrium exists where the regular type plays Decline and the best response by defender j 

is to play Idle. Now we must consider those situations in which the malicious type of player 

always plays Disguise. First we consider the pure strategy pair (Disguise if malicious, Decline if 

selfish) for player i. The expected payoff for j playing the pure strategy Monitor would then be 
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                                    (7) 

and the expected payoff of playing its pure strategy Idle is 

                          .      (8) 

Setting these two equations equal to each other we get 

   
    

 
          (9) 

Therefore, if                      , or if   
    

 
, then the best response of player j is 

Monitor. This is a Bayesian Nash Equilibrium because neither the malicious or selfish type of 

player can do better by changing strategy. However, if we have that α  
    

 
 , then the best 

response for player j is to play Idle. If player j chooses to play Idle, then the best response of the 

malicious type of player is to switch to Attack. Hence, {(Disguise if malicious, Decline if selfish), 

Idle} is not a BNE and {(Disguise if malicious, Decline if selfish), Monitor} is a BNE. 

 Finally, the last pure strategy combination we must consider for player i is (Disguise if 

malicious, Participate if selfish). If the defending node determines the best response to player i’s 

strategy is to play Idle, then the malicious type of node would move to play Attack instead. If the 

defending node deems its best response to play Idle, then we have again a BNE.  

 We have shown that there exists a number of Bayesian Nash Equilibrium for particular 

pure strategy profiles meeting certain criteria. Now we seek to find a mixed-strategy BNE for the 

cases that did not result in a pure strategy BNE. For this we must introduce two new belief 

probabilities to our defender and one to our attacker. Let p denote the belief of defender j about 

probability with which player i will play Attack and q be its belief of the probability with which 

player i will play Participate. Let r represent the attacking player’s belief about the likelihood that 

the defender will play Monitor. Hence, the expected payoff for player j playing Monitor is  

                                                     

                              (10) 
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and the expected payoff of defender j playing Idle is 

                                                  .    

 (11) 

By imposing                     , we get the malicious player should play Attack with 

probability p and that the regular type of player should play Participate with probability q so that 

                             .    (12) 

 We determine the probability that a malicious node will Attack similarly. The expected value of 

a malicious node playing Attack is 

                                   (13) 

and the expected value of playing Disguise is 

                                    (14) 

As before, we impose                        , and get that the defending player should 

play Monitor with probability     
    

  
. In the case that        then node i should play 

attack with probability 1. Recall Table 3. Notice that the payoffs for a selfish node are the same 

whether its opponent plays Monitor or Idle. Thus, the probability that j will play Monitor does not 

affect nodes of the regular type. Thus, the strategy pair ((p if malicious, q if selfish), r, α) is a 

mixed-strategy BNE if we have that   

                             .    (15) 
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Table 5: List of Pure Strategy Nash Equilibrium Found  

Pure Strategy Nash Equilibrium 

{(Attack if malicious, Participate if selfish), Idle} 

{(Attack if malicious, Decline if selfish), Idle} 

{(Disguise if malicious, Participate if selfish), Monitor} 

{(Disguise if malicious, Decline if selfish), Monitor} 

 

In summary, our static Bayesian detection game has four pure-strategy Bayesian Nash 

Equilibrium. Table 5 details the four pure-strategy equilibrium found. Notice these form two 

situations. One, the malicious type of node plays Attack and the defending node plays Monitor. 

Two, the malicious type of node plays Disguise and the defending node plays Monitor. These 

situations result in pure strategy BNEs, regardless of the play made by the selfish type of node.  

There also exists a mixed strategy Bayesian Nash Equilibrium for which the defender j plays 

Monitor with a probability derived from its beliefs p, q, and α and the attacker i plays Attack with 

a probability based on its belief, r, and neither player can improve their payoff by changing 

strategies. In the next section, we will derive these probability functions.  

 

 

 

 

 

 

 

 

 



24 

V. BELIEF UPDATE AND DYNAMMIC BAYESIAN GAMES 

 The previously described static Bayesian game is a one-stage game in which both 

attacker and defender attempt to maximize their payoff based on a fixed prior belief set about the 

type of their opponent. In addition we have illustrated the equilibria associated with these prior 

belief sets. Due to the difficulty of assigning accurate probabilities for each player’s beliefs, we 

extend the static Bayesian game to a multi-stage dynamic Bayesian game in which each player 

updates its belief probabilities in response to actions taken by its opponent and its previously held 

belief.  

 We assume that the static Bayesian game is repeatedly played at each time slot tk, where k 

= 0, 1, 2, … The payoffs of the players in each stage game have no discount. That is to say that 

the payoffs will remain the same for every stage game. In addition, an arbitrary interval of T 

seconds may be selected for each stage game and we consider the game to have an infinite 

horizon as any node will not know when its neighboring nodes will leave the network. 

Furthermore, we assume that the identities of players do not change as the game progresses. Thus, 

our model relies on authentication measures to counteract impersonation attacks, spoofing, and 

Sybil attacks [28]. During each stage, players will interpret all incoming messages from 

neighboring nodes and update their probability distributions according to Bayes’ theorem.  

 We construct our belief updating rules based on Bayes’ theorem. For each node, its belief 

{benevolent:{α: probability of malicious opponent, (1-α): probability of selfish opponent} and 

malicious:{r: probability of opponent monitoring, (1-r): probability of opponent not monitoring}} 

can be determined by its most recently updated belief and the interpretation of actions. We do not 

consider the case of a selfish node because selfish nodes do not form beliefs about their 

neighbors. Thus, we write the belief of a benevolent node at the (t+1)
th
 stage as:  

         
                        

     

                 
  

                         
         

                     

    or             (16) 
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   .        (17) 

We can then use these updated probabilities to recalculate the supplementary belief set {p: 

probability of attack, (1-p): probability of disguise, q: probability of participate, (1-q): probability 

of decline} as follow:  

                        
     

                
   and               (18)  

                                 
         

                        
  .          (19) 

Similarly, we write the belief set of a malicious node at the (t+1)
th
 stage as: 

         
                          

     

                

                      
     

                   
   

              (20) 

             
                      

         

               

                   
             

                   
  

     .              (21) 

These equations for building and updating belief probabilities constitute what we refer to as a 

belief system. We define a belief system to be a function that assigns each belief probability 

distribution over the histories in the set. Every node’s set of belief distributions are assigned 

initial values at the start of the game. Players update this set by observing actions in the current 

stage game and the previous belief it holds. Beliefs are the result of previous situations and can be 

backtracked to the initial belief and action observed. Therefore, the current belief set and 

observed action can fully represent the histories in the information sets, and those information 

sets can be reached with positive probabilities if the strategies are carefully designed. 
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VI. Simulation and Results 

 The strategies outlined in the previous sections have been implemented on a custom 

simulator based on ds, developed by Dr. Li Wu [29]. Wu’s simulator contains methods only for 

generating arbitrary numbers of nodes and placing them within a rectangular area. Thus, we took 

on the responsibility of implementing communication between neighboring nodes via Directed 

Sequence Distance Vector Routing in addition to our model specifications. Simulations are 

conducted in randomly generated MANETs. We assume that any node only has access to the 

packets directly addressed to it. 

  A specified number of wireless nodes are randomly placed in a 900m X 900m region 

with a transmission range of 300m. Once placed, nodes communicate with neighbors to build 

routing tables by broadcasting network probe packets. Each node stores the minimum number of 

hops to reach the destination node as well as the next node in the path. If a node receives a packet 

destined for a neighbor it refers to its routing tables and forwards the packet to the next node in 

the path to the destination node.  

 Each simulation is repeated 500 times, and the average is taken and used for results. We 

set the number of malicious nodes in the network to 20, the number of benevolent nodes is 20, 

and the remaining 20 nodes are of selfish type. For every benevolent node, its beliefs are 

initialized to α=0.2, p=0.5, q=0.5. The beliefs of the malicious nodes are initialized to r=0.5, 

q=0.5. In addition, the constants (which do not change throughout the simulation) are set to 

Cm=3, Ca=5, Cd=1, W=8, M=2, and S=4. Simulations showed that changing these constants had 

little effect on the results.  

 In Figure 2, we illustrate the change in belief of any particular benevolent node, i, 

interacting with any malicious node, j. The figure illustrates two plots for the belief of node i over 

time. The first plot details the belief set of a benevolent node updated with our static model, while 

the second plot describes the same belief updated using our dynamic model.  
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Notice, both plots quickly reach a steady state value of about .95, indicating a strong likelihood 

that the opposing installation is malicious. Our static model plot reaches this steady state earlier 

as continuous monitoring of opponents offers more chances to detect malicious activity. 

Nevertheless, our dynamic is able to identify the malicious installation only a few stage games 

behind its static counterpart. This tells us that our dynamic model is capable of identifying 

malicious installations within a reasonable amount of time. Figure 3, on the other hand, plots the 

belief of a particular malicious installation as it interacts with benevolent nodes over time. The 

graph shows us that malicious nodes are capable of identifying their monitoring counterparts 

within a timely manner as well. Notice, the malicious node identifies its opponent to be likely 

Monitoring earlier in the static model than in the dynamic one. This makes sense as the 

benevolent player monitors constantly in the static model. This gives the malicious player more 

opportunities to recognize its opponent’s strategy.   

 Now that we are certain that our model allows for identification of malicious and 

benevolent entities, we will compare it to other relevant works. First, we must define some 

terminology. We define goodput (G) to be the quotient of the number of legitimate packets and 

the total number of packets to travel through the network. throughput (T) is defined as the total 

number of legitimate packets divided by time. A higher value for throughput indicates better 

Figure 2: Belief of a benevolent node about the type of its 

opponent (malicious) as the game progresses 
Figure 3: Belief of a malicious node about the strategy of its 

opponent (benevolent) as the game progresses 
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performance in the network and higher values in goodput point to less waste of network 

resources. In Figures 4 and 5 we analyze the goodput and throughput  

 

 

 

  

 

 

 

 

 

of our network as the threshold for banning malicious installations varies. The threshold for 

banning is a maximum tolerance level allowed for a benevolent node’s belief p, the likelihood 

that the opposing player will play attack. If p reaches a certain threshold, we ban the installation. 

Figure 4 plots the goodput in relation to the ban threshold. Notice that goodput falls as the 

threshold increases. If we have a low value for the threshold, then nodes are banned as soon as 

they take any malicious actions, thus goodput is high since malicious installations are removed 

from the network quickly. However, if the threshold is high, then the malicious nodes are left in 

the network longer and goodput degrades as there are more attack packets in circulation. Our 

proposed dynamic model is only slightly worse than our static model as non-continuous 

monitoring allows malicious nodes to stay in the network slightly longer. 

 Figure 5 indicates the changes in throughput as the threshold for banning varies. 

However, we see the opposite effect as the previous. That is, throughput increases as the 

threshold rises. Consider the case in which the threshold is 0.5. The Throughput is low because 

malicious nodes will be excluded from the network early on in the game. Thus, we are losing all 

of the legitimate packets generated from malicious nodes attempting to hide within the network. 

Figure 4: Goodput as the Threshhold for banning possibly 

malicious installations increases 

Figure 5: Change in Throughput as the Threshhold for banning 

possibly malicious installations increases 
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Conversely, if the threshold is set to 1.0, then malicious nodes will stay in the network much 

longer before being removed. Hence, the Disguise strategy of these installations will increase the 

number of legitimate packets and therefore, improve throughput. This is our motivation behind 

our goal of coexistence. If we only exclude those installations that attack the network regularly 

we can significantly improve throughput in comparison to models that instantly ban nodes that 

have been identified as malicious. For this reason, we fix the threshold in future results at 0.75 so 

that we balance the gain in throughput with the loss in goodput.  

 In Figures 6 and 7 we show the effect of varying the number of benevolent nodes in the 

network on the goodput and throughput. The number of devices of malicious or selfish type is 

equally divided between 40 remaining installations. Figure 6 details goodput. Notice that  

 

 

  

 

 

 

 

goodput  increases as the number of benevolent nodes increases. This makes sense as an increase 

in the population of monitoring installations will reduce the time that malicious nodes are left in 

the network, thus reducing the number of non-legitimate packets. Similarly, throughput increases 

as the number of benevolent nodes rises. This increase in the number of legitimate packets per 

unit of time is the result of two factors. First, benevolent nodes generate or forward only 

legitimate messages. Second, increasing the number of benevolent nodes reduces the time that 

malicious installations exist in the network. Thus, reducing the number of legitimate packets lost 

to malicious attacks. Therefore, we can conclude that increasing the number of monitoring nodes 

improves the network as a whole.  

Figure 6: Goodput as the number of benevolent nodes varies Figure 7: Throughput as the number of benevolent ndoes varies 
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 We show the effect of changing the number of malicious nodes in the network on 

throughput and goodput in Figures 8 and 9. In both cases, the number of benevolent nodes is held 

constant at 20, along with 20 selfish installations. Goodput decreases as the number of malicious 

nodes increases. This is the result of an increase in the total number of non-legitimate packets in 

the network originating from the rising number of malicious nodes. Likewise, throughput 

decreases for the same reason.  

 Notice in Figures 2-9, our dynamic model performed slightly worse than our static 

model. We consider these acceptable losses as the goal of our dynamic model is to conserve 

power by monitoring only a portion of the time. Thus, it is necessary to show that our model  

  

 

 

  

 

 

 

 

Figure 8: Goodput as the number of malicious nodes varies Figure 9: Throughput as the number of malicious nodes varies 

Figure 10: Total power usage of a benevolent node as the game 

progresses 
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does, in fact conserve power. Figure 10 shows the total power usage of a particular benevolent 

node over time. Recall, the data is the result of an average over 500 iterations. It is clear that at 

any point in time, the total power usage generated by our dynamic model is lower than that of the 

static. The difference between these two rises as the length of the game increases. Therefore, we 

have shown that our model achieves adequate values for goodput and throughput in addition to 

conserving power for benevolent installations.  
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VII. Fault Tolerant Dynamic Bayesian Games 

 At this point we would like to introduce a few other constants to improve the accuracy of 

the model. Let β denote the probability of successfully identifying an attack packet and Ψ denote 

the probability of successfully identifying a decline message. Including these new parameters 

means our Bayesian Nash Equilibria will change. For instance, consider the pure strategy pair 

(Attack if malicious, Participate if selfish), then the expected payoff of the defending 

(monitoring) player is  

                                                    (22) 

Likewise, the player’s expected payoff of playing its pure strategy Idle is 

                           .           (23) 

Setting these two equations equal to each other we get  

   
  

      
.              (24) 

Therefore, if,                      , or if   
  

      
, then the best response of the 

defending player is to play Monitor. The other pure and mixed strategies can be calculated 

similarly.  

 We will also have to include these new parameters in the belief updating system we 

described in Section V. Thus, we recalculate the belief of a benevolent node at the (t+1)th stage 

as:  

        
                              

        

                                        

                                
             

                                           
 

  or   (25) 

The other probabilities can be updated in the same matter. Including these two parameters 

improves the accuracy of the model by accounting for the instability of wireless networks and the 

difficulty of identifying attacks. We refer to this improved model as the fault tolerant dynamic 

Bayesian game.  
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VIII. Conclusion 

 In this paper we have discussed the importance of identifying both malicious and selfish 

nodes in wireless ad-hoc networks. We have developed a model based on Bayesian games with 

incomplete information that is capable of modeling interactions of any type of node found in an 

ad-hoc environment. Additionally, we have found four pure-strategy Bayesian Nash Equilibrium 

in which neither attacker or defender can change their strategy to improve their payoff. As well, 

we establish a mixed-strategy Bayesian Nash Equilibrium in which players choose actions with a 

particular probability based on the likely probability distribution of their opponent. In either case 

we were able to verify the existence a Nash Equilibrium between the attacking and defending 

players in which no player can advance their payoff. We proved through rigorous simulation that 

our proposed benevolent node is capable of determining the types of nodes in the network within 

a reasonable timeframe while conserving power. Additionally, we showed that throughput can be 

improved by coexisting with malicious nodes that seldom attack. We also developed a Fault 

Tolerant model that better represents the uncertainty of wireless networks. In the future we would 

like to improve the accuracy of the model by allowing nodes to dynamically move throughout the 

network. We would also like to explore the additional strategy of malicious nodes to flee from the 

network to avoid punishment.  
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