
 

Introduction 

It is the purpose of this paper to explore a variant of Pascal’s triangle.  This variant has the 

rule that every entry, denoted as kna , , where 1,1a =1, is calculated in a way such that  

kna ,  = ∑
−

=
−−

1

1
,

k

i
ikina + ∑

−

=
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,

n

ki
kia .  This means that when these numbers are put into a triangular 

formation, every number is the sum of all the numbers above it in its two diagonals.  The 

beginning of the triangle looks like the following: 
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2    2    2 

4    5    5    4 
8   12  14  12   8 

16  28  37  37  28  16 
 
For example, 14 = 2 + 5 + 5 + 2.  Now, it is important to understand some notation and 

terminology before going any further.  The rows of the triangle will begin at n=1 and work down 

the triangle in increments of 1.  The columns of the triangle point southwest (60o from 

horizontal) and will begin at k=1, and proceed in increments of 1.  For example, we would say 

that the leftmost number 12 would be in row 5 and in column 2.  Shallow diagonals point 

southwest (30o from horizontal).  For example, the third shallow diagonal consists of the 

elements 1,3a  and 2,2a .  The sum of the elements in any row n will be represented by nS .  The 

sum of the elements in any shallow diagonal n will be represented by nD .  Finally, anticolumns 

are the columns of the triangle pointing southeast that begin at k`=1, and proceed in increments 

of 1 moving diagonally from right to left.  So, for example, the rightmost number 12 would be in 

row 5 and in anticolumn 2.  Now that the notation is defined, we will explore the new triangle we 

have defined. 
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Results 
 

Some interesting discoveries found within this triangle will now be discussed, with some 

proven, in the order that they were found. 

Lemma 1:  1,na  = 2 1,1−na  for n≥ 3. 
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definition.  Hence, 1,na  = 2 1,1−na  for n≥ 3. 

 

Theorem 1:  1,na  = 22 −n  for n≥ 2. 

Proof:  Since 1,na  = 2 1,1−na , then the theory of difference equations implies 1,na  = C 12 −n .  

Solving for C when 1,4a  = 4.  We get C = ½, which means 1,na  = 22 −n  for n≥ 2. 

 
Lemma 2:  2,1+na = 2 2,na + 32 −n  for n≥ 3.   
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Theorem 1, 2,1+na = 2 2,na + 32 −n  for n≥ 3. 
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Theorem 2:  2,na = (n+1) 42 −n  for n≥ 4. 

Proof 1:  The theory of difference equations implies 2,na = (A + Bn)( 42 −n ).  Solving for A and 

B when 2,3a = 2 and 2,4a =5, we get A=B=1.  So, 2,na = (n+1) 42 −n . 

 
Proof 2:  (By Induction)   When n = 4, 2,4a = 2 (2) + 02 = 5 =   (4+1) 02 .  Now assume that 

2,na = (n+1) 42 −n is true for some n.  Since 2,1+na = 2 2,na + 32 −n  we have 2,1+na = 2((n+1) 42 −n ) 

+ 32 −n  = (n+2) 32 −n , and we conclude by induction that 2,na = (n+1) 42 −n  for n≥ 4.   

 

Lemma 3:  3,na = 2 3,1−na + 2,2−na + 1,2−na  for n≥ 4. 
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+ 3,1−na  = 2 3,1−na  + 2,2−na  + 1,2−na  for n≥ 4.  

 

Theorem 3:  3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

Proof 1:  The theory of difference equations implies 3,na  = C( 72 −n ) + Dn( 72 −n ) + En2( 72 −n ).  

Solving for C, D, and E when 3,4a = 5, 3,5a = 14, and 3,6a = 37, we get C= -4, D= 7, and E= 1, 

which gives 3,na = ( 274 nn ++− ) 72 −n . 
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Proof 2:  (By Induction)  First, for n=5, 3,5a = 2 3,4a + 2,3a + 1,3a = 2(5) + 2 + 2 = 14 = (-4 + 7(5) 

+ 52) 2-2.  Now assume that 3,na = ( 274 nn ++− ) 72 −n  is true for some n.  Proceeding 

inductively, 3,1+na = 2 3,na + 2,1−na + 1,1−na  ⇒  3,1+na  = ( 274 nn ++− ) 62 −n  + n 52 −n  + 32 −n  ⇒  

3,1+na = 32 −n [( 274 nn ++− ) 32 −  + n 22 −  + 1] ⇒  62 −n 32 [(1/2) + (9n/8) + (n2/8)] ⇒  (4 + 9n + n2) 

62 −n , and we conclude by induction that 3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

 

Lemma 4:  nS = 3 1−nS  for n≥ 3. 
 
Proof:  It can be shown that nS = 2 1−nS  + 1−nS , and since 1−nS = 2 2−nS  + 2 3−nS  + …+ 2 1S .  This 

means nS = 3 1−nS . 

   
Theorem 4:  nS = (2/9) n3  for n≥ 2 where 1S = 1 and 2S = 2. 

Proof 1:  From the theory of difference equations and lemma 4, nS = C + D n3 .  Since 2S = 2 and 

3S = 6, solving for C and D, we get C = 0 and D = (2/9).  Thus, nS = (2/9) n3 . 

 

Proof 2:  (By Induction)  First, for n=3, 3S = 3 2S = 3(2) = 6 = (2/9) 33.  Now assume that nS = 

(2/9) n3  for some n.  So, 1+nS = 3 nS  ⇒  3(2/9) n3  ⇒  1+nS = (2/9) 13 +n .  Thus, by induction, 

1+nS = (2/9) 13 +n  for n≥ 2. 

 
Conjecture 1:    The triangle is symmetrical (i.e.:  kna , = knna −+1, ). 

 
Conjecture 2:    nS = 2 1−nS  + 2 2−nS  + 2 3−nS  + …+ 2 1S  for n≥ 2. 

Conjecture 3:  nD /3 = 1−nD /3 + 2−nD  for n≥ 6. 
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Conjecture 4:   The only odd numbers in the triangle are 1,1a  and entries of the form kna ,2 and 

`,2 kna .  These are consecutive numbers in the middle of every even numbered 

row. 

 
Conjecture 5:    If kna , ≡  1, +kna (mod 3), then 1,1 ++ kna ≡ kna , (mod 3). 
 

Plans for Next Semester 
 
 There are some interesting patterns in the triangle (mod 3), besides Lemma 1, which 

means that next semester, these patterns will be further explored.  In addition, there does not 

seem to be any interesting patterns emerging from the triangle (mod n for other n).  A goal for 

next semester is to have all of the conjectures proven.  Also, I have just received an article titled, 

“A New Look at Fibonacci Generalization” from the library through interlibrary loan.  This is in 

reference to conjecture 2, and may help in finding a proof for it, as well as some other interesting 

information.  Another goal for next semester is to find out how, if possible, any of the results will 

be useful elsewhere.  This will be interesting since Pascal’s Triangle has had such an effect on 

other fields of mathematics. 
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A Variant of Pascal’s Triangle 
 
 
 
 
 
 
 
 

1 
1     1 

2    2    2 
4    5    5    4 

8    12   14   12    8 
16   28   37   37   28   16 

32   64   94   106   94   64   32 
64   144  232  289  289  232  144   64 
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