
OPTIMIZATION OF A DISTRIBUTION TO
MAXIMIZE CASTING COST IN

HEARTHSTONE

By

Ryan White

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF
MATHEMATICS AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE

STETSON UNIVERSITY

2018

1

0.1 Acknowledgments

I would like to acknowledge my family: mom, dad, and sister, for creating an environment

where I can learn and grow. Their support and genuine interest in my life has given and

continues to give me the con�dence to �nd and excel in areas which I am passionate about.

This supportive environment has enabled me to succeed and thrive in a variety of ways.

I would also like to acknowledge Dr. Erich Friedman for not only his great help in

conducting my Senior Research, but also for his continued ability to push me. Dr. Friedman's

classes have always been far and away the most challenging courses I have taken at Stetson,

and thus those in which I �nd myself learning the most.

I would like to acknowledge Kathryn Sarullo for her help with my code in the second

semester of this project. Without her, the code would've taken over twice as long, and I likely

would not have been able to �nish the amount of code that I did due to the runtime.

I would �nally like to acknowledge my friends here at Stetson. College is a time of

change and growth for everyone, and there isn't a group of people I would rather have done

it with.

2

0.2 Abstract

Optimization Of A Distribution To Maximize Casting Cost In Hearthstone

By

Ryan White

May 2018

Advisor: Dr. Erich Friedman

Department: Mathematics and Computer Science

Through calculating probabilities for a predetermined number of rounds in a Hearthstone

game, we seek to optimize the distribution of our 30 card deck in order to maximize the

expected value of total casting cost. We assume that the casting cost, the cost required to

play a card, is directly proportional to the value of that card; thus, by optimizing casting

cost every round, you also optimize value.

We take two approaches to determine the optimal distribution. Our �rst approach

calculates all combinatorial probabilities for various hands of cards, while our second ranks

the best plays for each round and has the computer run through all the possibilities. In both

approaches, we utilize MATLAB to calculate the best possible distribution and corresponding

expected value. Speci�cally, we work with a total of both 4 and 5 rounds of play, and use both

�the hero power� and �the coin,� card game elements unique to Hearthstone, to complicate

our calculations and strategies.

3

Contents

0.1 Acknowledgments . 2

0.2 Abstract . 3

List of Tables 8

1 Preliminaries 9

1.1 Hearthstone . 9

1.2 Combinatorics . 10

1.3 Permutations . 10

1.4 Combinations . 11

1.5 Expected Value . 11

2 Deck Optimization for Player 1 13

2.1 De�nitions . 13

2.2 Round 1 . 13

2.3 Round 2 . 14

2.4 Round 3 . 16

2.5 Round 4 . 18

2.6 Expected Value . 19

4

3 Deck Optimization for Player 2 21

3.1 Round 1 . 21

3.2 Round 2 . 21

3.3 Round 3 . 22

3.4 Round 4 . 23

3.5 Expected Value . 23

4 Hero Power 25

4.1 Player 1 . 25

4.2 Player 2 . 26

4.3 Work with Probabilities . 27

4.4 Value: Round 1 . 28

4.5 Value: Round 2 . 29

4.6 Value: Round 3 . 29

4.7 Value: Round 4 . 30

4.8 Value: Round 5 . 30

4.9 Round 6 . 31

5 Optimization Code 32

5.1 Code: Player 1, 4 Rounds . 32

5

5.2 Code: Player 2, 4 Rounds . 34

5.3 Code: Player 1, 5 Rounds . 35

5.4 Code: Player 2, 4 Rounds, Coin . 35

6 Results 38

6.1 Player 1, 4 Rounds . 38

6.2 Player 2, 4 Rounds . 39

6.3 Player 1, 5 Rounds . 40

6.4 Player 2, 4 Rounds, Coin . 41

6.5 Code Runtimes . 43

6.6 Summary of Results . 45

7 Future Work 46

7.1 Hero Power . 46

7.2 Optimization of Probability . 46

8 Appendix 47

8.1 Code: Player 1, 4 rounds . 47

8.2 Code: Player 2, 4 Rounds . 50

8.3 Code: Player 1, 5 Rounds . 53

8.4 Code: Player 2, 4 Rounds, Coin . 58

6

8.5 Code: Optimization of Average Game Total for Player 1 62

8.6 Code Runtimes . 67

7

List of Tables

1 Summary of Results . 45

8

1 Preliminaries

1.1 Hearthstone

Hearthstone is a turn-based online card game played between two players. Both players

begin with a total of 30 cards in their respective decks. Player 1 begins the game with 3 of

his 30 cards in hand, while Player 2 starts with 4 of hers. Cards in Hearthstone can be spells,

minions, or numerous other things with varied cost, health, attack, and damage. Thus, for

the purpose of our research we will simplify these stats into one which we can fully analyze:

casting cost. Turns and cards are marked by this �casting cost,� the cost required to play a

card. Both players take one turn each round, with each drawing 1 card at their turn's start.

Thus, total cards drawn can be expressed as 3+ n for Player 1 and 4+ n for Player 2, where

n is the round number. The cards played during round n, assuming the �rst round is denoted

as round 1, cannot exceed a total casting cost of n.

For the purpose of our research, we are assuming that the worth, or value, of a card is

directly proportional to its relative casting cost. Hence, 4-cost cards are 4 times as strong

as 1-cost cards, and 2 times as strong as 2-cost cards. This assumption also implies that

card cost is equivalent to power, regardless of how many cards it may be split across. The

combination of a 2-cost card and a 1-cost card represents the same value and power that a

3-cost card does. Thus, maximizing casting cost will maximize card power, or strength, and

create the best chance of winning the game.

As a slightly more in-depth explanation of the Hearthstone metagame, Hearthstone, and

card games similar to it, consist of 3 types of decks: aggro, midrange, and control. These

decks di�er in card distribution and game plan. Aggro decks take to the board early, using

low cost cards to gain an early game advantage and beat the other player quickly. Midrange

decks run some low cost cards with a majority of 3, 4, and 5-cost cards to establish a strong

midgame presence and steamroll the game from there. Control decks run many cards that

counter opponents' early game aggression, often referred to as �removal cards.� Combining

9

their ability to hold o� aggression with expensive, usually 7-cost cards and higher, late game

cards, these decks run their opponents out of cards and out value them in the late game.

These 3 decks form a relationship similar to rock, paper, scissors. While some matches

are outliers, aggro generally beats midrange, midrange beats control, and control beats aggro.

Our research will optimize an aggro deck as it strives to �ll out its casting cost on the �rst

several turns of the game in order to �nish the game quickly. Calculations to optimize the

other types of decks would be impossible as their removal cards have variable value depending

on the state of the game. A 5-cost card could be better used on round 9 to maximize its

value in one game, but could be game saving if played on round 5 in another.

1.2 Combinatorics

This research will consist of math almost entirely from the combinatorics �eld of proba-

bility, and thus, this section will be a minor refresher in this particular �eld of mathematics.

To begin, we will look at the probabilities regarding a particular event occurring. A

classic example is the probability of drawing a card or cards from a deck. Given a standard

52 card deck, what is the probability that the card we draw is exactly the 5 of Clubs? Such a

case reminds us of the basic formula for computing probabilities. The chance for an event to

occur is: the number of possibilities where the event occurs divided by the total number of

possibilities. We can express the probability of drawing the 5 of Clubs given a standard deck

as: P (5♣) = 1
52
. Using additional possibilities, essentially greater than one case, requires us

to make a distinction between permutations and combinations.

1.3 Permutations

Permutations are probabilities where order matters; the order in which you draw cards

a�ects the next card drawn. For example, given that we've drawn a 5 from a standard deck,

10

the probabilities of drawing subsequent cards change. Previously, the probability of drawing

any 5 in the deck was 4
52
, as there are 4 5's in a 52 card deck. However, after having drawn

a 5, the probability changes to 3
51
, as there are now 3 5's remaining in the deck of 51 cards.

Thus, the probability of drawing a 5 and then another 5 is 4
52
· 3
51
.

1.4 Combinations

Combinations are probabilities where order does not matter. Instead of calculating

the probability as drawing the 5 of clubs and then another 5, combinations calculates the

probability that your �rst 2 cards are both the 5 of clubs and another 5. Combinations

utilizes this idea of �choosing� to calculate probabilities. Such a statement is expressed as a

factorial divided by a multiplication of several factorials p1!
p2!p3!

such that p1 = p2 + p3. This is

expressed as
(
p1
p2

)
, as either p2 or p3 work when the denominator consists of only 2 factorials.

We are choosing p2 cards out of a possible p1. Thus, one could express the probability of

of drawing a 5 as
(41)
(521)

, which simpli�es to 4
52
. The di�erence from permutations comes from

multiple cards rather than simply 1 card.

1.5 Expected Value

Calculating the total expected value of a round involves �rst �nding both the probabil-

ities and possibilities of the given event. We can calculate the probabilities of events for our

research using the aforementioned method of �combinations.� We use the term �possibilities�

to indicate the importance of order. In this research, we found probabilities for each individ-

ual case, then multiplied them by the amount of possibilities for each case occurring. Adding

these results would give us the probability for a given number occurring on a given round.

Multiplying the probabilities for each round by that round's respective value will give the

expected value of the round. Finally, as expected values are additive, we can add all rounds'

expected values together, yielding the expected value of the total game. The optimization of

our deck will be done by maximizing the expected casting value across 4 rounds.

11

As an example, we can �ip a weighted coin. 1 side of the coin has a value of 1, the other

side a value of 2. The coin is weighted such that it has a 70% chance to land with the side

valued 2 facing up, and thus a 30% chance to get 1. The expected value of such a coin �ip

can be found by multiplying the probabilities of each event by their respective value, thus

E(weighted coin �ip) = 0.30 · (1) + 0.70 · (2) = 1.7.

12

2 Deck Optimization for Player 1

2.1 De�nitions

As previously mentioned, our research goal is to optimize a deck for some small number

of rounds. However, it is trivial to optimize a Hearthstone deck for only 1, 2, or 3 rounds.

We can do this by simply holding all 30 cards to a casting cost of 1. This guarantees our

ability to play the maximum casting cost for each of the �rst 3 rounds, as all cards cost 1:

we play a 1-cost on round 1, 2 1-costs on round 2, and 3 1-costs on round 3. This gives us a

guaranteed maximum, as the cards played during all rounds are equivalent to the maximum

possible casting cost of each turn. Thus, our �rst goal is to optimize a deck for the �rst 4

rounds, as the probabilities associated with such a case are not trivial.

We will be using a1, a2, a3, and a4 as variables to represent the amount of 1, 2, 3, and

4-cost cards, respectively, in the 30 card deck. Again, a1 + a2 + a3 + a4 = 30, and Player 1

has a total of 4 cards on �rst turn.

2.2 Round 1

We begin by calculating the probability of playing cards with a total casting cost of 0

on round 1. We have no 0-cost cards in our deck, thus, the only feasible way to have a value

of 0 is to play no cards at all. Additionally, as we can only play a maximum of 1 casting cost

this turn, the way we calculate the probability of having no playable cards on round 1 is to

calculate the probability of having no 1-costed cards in the 4 cards that we have drawn thus

far.

From Chapter 1, we calculate this probability using combinatorics. We are choosing

our �rst 4 cards to be not 1, thus we are choosing 4 cards out of the non-1-costed cards:

a2, a3, and a4. We can express this as
(
a2+a3+a4

4

)
. However, we know that probabilities are

13

�the chance of x happening out of the total possibilities.� The total possibilities here can

be expressed by the total number of cards choosing any 4, or
(
30
4

)
. Thus, the probability of

casting a total value of 0 on round 1 is:

P (casting 0 on round 1) =
(
a2+a3+a4

4

)
/
(
30
4

)
As previously stated in Chapter 1, all probabilities for any given event must add to a

total of 1. Thus, when there is one probability remaining, we are able to �nd it by subtracting

all the previous probabilities for the event from 1. Here, we subtract P (0) from 1 to get P (1).

P (casting 1 on round 1) = 1− P (0)

2.3 Round 2

We will calculate the probabilities for round 2 in a very similar way, although there are

two slight di�erences from round 1. We will have to keep in mind both the possibility of

having played cards in previous rounds and that the total number of cards has increased

from 4 to 5. This will alter our previous denominator from
(
30
4

)
to

(
30
5

)
.

While very similar to the calculation for scoring a 0 in round 1, round 2 brings in another

case. The �rst case of being unable to play any cards is to simply draw no 1's or 2's anywhere

in your �rst 5 cards. We can express this case as
(
a3+a4

5

)
. The second case occurs when you

have 4 3's or 4's, but you have played a 1 on the �rst turn. This can be written as a3+a4 = 4,

a1 = 1. While we still have a total of 5 cards for round 2, we can account for the 1 being

played in the �rst round by saying that, of the 5 possible places that our 1 could be, in order

for it to be played on the �rst round, it must be in one of the �rst 4 places, representing the

4 cards we had access to on round 1. Thus, we include a fraction of 4
5
with our probability

representing a3+a4 = 4 and a1 = 1. We must express this case as two probabilities multiplied

together, as we need to choose 4 cards from a3 + a4 total 3 and 4-cost cards, and also need

to choose 1 card from the a1 total 1-cost cards. We write this as 4
5

(
a3+a4

4

)(
a1
1

)
. Including the

previously mentioned denominator of
(
30
5

)
, we get:

14

P (casting 0 on round 2) = [
(
a3+a4

5

)
+ 4

5

(
a3+a4

4

)(
a1
1

)
]/
(
30
5

)
These probabilities set the theme for the rest of the calculations - almost all involve

fractions and several probabilities multiplied by each other. There are only 2 cases that

result in a total value of 1 being played in round 2, and both are closely related to the last

case of P (0) for round 2. The �rst case considers casting 1 for both the �rst and second

round. The only way we would play a 1-cost card on round 2 is if we had no other 1's to

accompany it, and no 2's to play instead. Thus, for this case, a3 + a4 = 3, and a1 = 2. The

order in which the cards are in does not matter for this speci�c case, as given any order of

the previously mentioned 5 cards, we can always play a 1-cost on both turn 1 and turn 2.

The fact that order is irrelevant for this particular case means we do not need a fraction to

accompany our choose statements, or more accurately, the fraction is 5
5
= 1. Thus, the �rst

case can be written as
(
a3+a4

3

)(
a1
2

)
. The second case is closely related to the �nal case of P (0)

for round 2. We want 4 cards costed 3 or 4 (a3 + a4 = 4), and only 1 card costed 1 (a1 = 1).

However, this time we want our 1-cost card to be the last of the 5 cards, the card we draw

on round 2. Such a condition means that while the 1-cost card is playable on round 2, it was

not playable on round 1. By locking the �rst 4 cards to only 3 or 4-costed cards, we ensure

that our total value will be 1 on round 2 for this case, given the last card has a casting cost

of 1. Again, by needing to draw a 1-cost as the last card, we use a fraction of 1
5
with our

probabilities, giving us 1
5

(
a3+a4

4

)(
a1
1

)
as the term for our second case. Adding these together

and dividing by
(
30
5

)
, we get:

P (casting 1 on round 2) = [
(
a3+a4

3

)(
a1
2

)
+ 1

5

(
a3+a4

4

)(
a1
1

)
]/
(
30
5

)
And �nally, we can again express P (n) for round n as the previous possibilities in the

same round n subtracted from 1. Thus, for P (2) for round 2, we have:

P (casting 2 on round 2) = 1− P (0)− P (1)

15

2.4 Round 3

Our calculations for round 3 follow the same process and structure as those for rounds

1 and 2. Thus, for this round, we will simply list the possible hands and give the respective

associated probabilities.

Beginning with the probability of playing nothing on round 3, our possible hands are:

6 4-cost cards, in any order:
(
a4
6

)
,

5 4-cost and 1 1-cost cards, given that the 1-cost is not the last card drawn: 5
6

(
a4
5

)(
a1
1

)
4 4-cost and 2 1-cost cards, given that both 1-cost cards are not the last card drawn: 4

6

(
a4
4

)(
a1
2

)
3 4-cost and 3 1-cost cards, given that all 1-cost cards are not the last card drawn: 3

6

(
a4
3

)(
a1
3

)
5 4-cost and 1 2-cost cards, given that the 2-cost is not the last card drawn: 5

6

(
a4
5

)(
a2
1

)
4 4-cost, 1 1-cost, and 1 2-cost cards, given that the 1-cost is in the �rst 4 cards and the

2-cost in the �rst 5. This can be expressed as 4
6
4
5
= 8

15
, where 4

6
is the probability for the

1-cost in the �rst 4, and 4
5
is the probability for the 2-cost in the �rst 5, given the 1-cost.

Thus: 8
15

(
a4
4

)(
a1
1

)(
a2
1

)
.

Thus, our total probability for casting 0 on round 3, given our 6 card drawn from the 30 card

deck at that point, is:

P (casting 0 on round 3) = [
(
a4
6

)
+ 5

6

(
a4
5

)(
a1
1

)
+ 4

6

(
a4
4

)(
a1
2

)
+ 3

6

(
a4
3

)(
a1
3

)
+ 5

6

(
a4
5

)(
a2
1

)
+

8
15

(
a4
4

)(
a1
1

)(
a2
1

)
]/
(
30
6

)
The possible hands for casting 1 on round 3 are:

5 4-cost and 1 1-cost cards, given that the 1-cost is the last card drawn: 1
6

(
a4
5

)(
a1
1

)
,

4 4-cost and 2 1-cost cards, given that one of the 2 1-costs is the last card drawn: 2
6

(
a4
4

)(
a1
2

)
,

3 4-cost and 3 1-cost, given that one of the 3 1-costs is the last card drawn: 3
6

(
a4
3

)(
a1
3

)
,

2 4-cost and 4 1-cost cards, in any order:
(
a4
2

)(
a1
4

)
,

4 4-cost, 1 1-cost, and 1 2-cost cards, given that the 1-cost is the last card drawn: 1
6

(
a4
4

)(
a1
1

)(
a2
1

)
,

3 4-cost, 2 1-cost, and 1 2-cost cards, given that a 1-cost is in the �rst 4, a 2-cost is in the �rst

5, and a 1-cost is the last card. As these cases were more complicated than most, we found

the orders of the case that failed to cast 1 on round 3. We found 2 sets of orders that failed

16

our casting criteria: those that draw the 2-cost last, with a 1
6
probability of occurring, and

those that draw both 1-cost cards last, with a 2
6
1
5
probability. Summing these orders results

in 1
6
+ 2

6
1
5
= 7

30
. Finally, subtracting from 1 gives us 1− 7

30
= 23

30
. Thus: 23

30

(
a4
3

)(
a1
2

)(
a2
1

)
.

Thus, our total probability for casting 1 on round 3 is:

P (casting 1 on round 3) = [1
6

(
a4
5

)(
a1
1

)
+ 2

6

(
a4
4

)(
a1
2

)
+ 3

6

(
a4
3

)(
a1
3

)
+
(
a4
2

)(
a1
4

)
+ 1

6

(
a4
4

)(
a1
1

)(
a2
1

)
+

23
30

(
a4
3

)(
a1
2

)(
a2
1

)
]/
(
30
6

)
The possible hands for casting 2 on round 3 are:

5 4-cost and 1 2-cost cards, given that the 2-cost is the last card drawn: 1
6

(
a4
5

)(
a2
1

)
,

4 4-cost, 1 1-cost, and 1 2-cost cards, given that the 2-cost is the last card drawn: 1
6

(
a4
4

)(
a1
1

)(
a2
1

)
,

3 4-cost, 2 1-cost, and 1 2-cost cards, given that the 2-cost is the last card drawn: 1
6

(
a4
3

)(
a1
2

)(
a2
1

)
,

2 4-cost, 3 1-cost, and 1 2-cost cards, in any order: 1
6

(
a4
2

)(
a1
3

)(
a2
1

)
,

3 4-cost, 1 1-cost, and 2 2-cost cards, given that the 1-cost is in the �rst 4 cards: 4
6

(
a4
3

)(
a1
1

)(
a2
2

)
,

2 4-cost, 1 1-cost, and 3 2-cost cards, given that the 1-cost is in the �rst 4 cards: 1
6

(
a4
2

)(
a1
1

)(
a2
3

)
,

1 4-cost, 1 1-cost, and 4 2-cost cards, given that the 1-cost is in the �rst 4 cards: 4
6

(
a4
1

)(
a1
1

)(
a2
4

)
,

1 1-cost and 5 2-cost cards, given that the 1-cost is in the �rst 4 cards: 4
6

(
a1
1

)(
a2
5

)
,

4 4-cost and 2 2-cost cards, in any order:
(
a4
4

)(
a2
2

)
,

3 4-cost and 3 2-cost cards, in any order:
(
a4
3

)(
a2
3

)
,

2 4-cost and 4 2-cost cards, in any order:
(
a4
2

)(
a2
4

)
,

1 4-cost and 5 2-cost cards, in any order:
(
a4
1

)(
a2
5

)
,

6 2-cost cards, in any order:
(
a2
6

)
.

Thus, our total probability for casting 2 on round 3 is:

P (casting 2 on round 3) = [1
6

(
a4
5

)(
a2
1

)
+ 1

6

(
a4
4

)(
a1
1

)(
a2
1

)
+ 1

6

(
a4
3

)(
a1
2

)(
a2
1

)
+

(
a4
2

)(
a1
3

)(
a2
1

)
+

4
6

(
a4
3

)(
a1
1

)(
a2
2

)
+ 4

6

(
a4
2

)(
a1
1

)(
a2
3

)
+ 4

6

(
a4
1

)(
a1
1

)(
a2
4

)
4
6

(
a1
1

)(
a2
5

)
+
(
a4
4

)(
a2
2

)
+
(
a4
3

)(
a2
3

)
+
(
a4
2

)(
a2
4

)
+
(
a4
1

)(
a2
5

)
+(

a2
6

)
]/
(
30
6

)
Finally, we can express the probability for casting 3 on round 3 as the previous round

probabilities all subtracted from 1:

17

P (casting 3 on round 3) = 1− P (0)− P (1)− P (2)

2.5 Round 4

Our calculations for round 4 follow the same process and structure as those for the

previous rounds. Round 4 probabilities proved to be quite a bit shorter than expected as the

possible hands began to depend heavily on remaining hand size.

As a perfect example, there are actually no possible hands that result in casting 0 on

round 4, we can play anything drawn. Thus, the probability is:

P (casting 0 on round 4) = 0

By the above reasoning concerning hand size, the only hand where a 1-cost is played on

round 4 is the one with no cards in hand and drawing a 1-cost as the last card. Anything

left in hand on round 4 will be playable, as our round number is now equal to our maximum

casting cost value, 4. The only possible hand with no cards left in hand before drawing the

last 1-cost is 6 1-cost cards:
(
a1
7

)
.

Thus, as round 4 now has a total hand size of 7, the total probability for playing 1 on

round 4 is:

P (casting 1 on round 4) =
(
a1
7

)
/
(
30
7

)
Following the exact reasoning from above, the only hand where a 2-cost is played on

round is 6 1-cost and 1 2-cost cards:
(
a1
6

)(
a2
1

)
.

Thus, the total probability is:

P (casting 2 on round 4) =
(
a1
6

)(
a2
1

)
/
(
30
7

)
Using the same reasoning, we can see that the possible hands for casting 3 on round 3

are:

18

6 1-cost and 1 3-cost cards, in any order:
(
a1
6

)(
a2
1

)
,

5 1-cost and 2 3-cost cards, in any order:
(
a1
5

)(
a2
2

)
,

7 3-cost cards, in any order:
(
a3
7

)
,

6 3-cost and 1 1-cost cards, given that the 1-cost is in the �rst 5 cards: 5
7

(
a3
6

)(
a1
1

)
,

6 3-cost and 1 2-cost cards, in any order:
(
a3
6

)(
a2
1

)
,

5 3-cost, 1 1-cost, and 1 2-cost cards, given that the 1-cost is in the �rst 5 cards: 4
7

(
a3
6

)(
a1
1

)
,

5 3-cost and 2 2-cost cards, given that a 2-cost is in the �rst 5. The easiest way of calculating

this is to �nd the case where this set of cards would result in 4, which is 3333322, with a

probability of 2
7
1
6
= 1

21
, found by de�ning the case as needing to have 2 2-costs at the end.

Subtracting this from 1 to �nd the probabilities that do work gives 20
21
. Thus: 20

21

(
a3
5

)(
a2
2

)
,

4 3-cost, 1 1-cost, and 2 2-cost cards, given that the 1-cost is in the �rst 4 cards and that

a 2-cost is in the �rst 5 cards. The probability for a 1-cost in the �rst 4 is 4
7
, and the

probability for a 2-cost in the �rst 5 afterwards is 4
6
, resulting in a fraction of 4

7
4
6
= 8

21
. Thus:

8
21

(
a3
4

)(
a1
1

)(
a2
2

)
,

4 3-cost and 3 1-cost cards, given that all 3 1-costs are in the �rst 5: 2
7

(
a3
4

)(
a1
3

)
.

Thus, the total probability is:

P (casting 3 on round 4) = [
(
a1
6

)(
a3
1

)
+
(
a1
5

)(
a2
2

)
+
(
a3
7

)
+ 5

7

(
a3
6

)(
a1
1

)
+
(
a3
6

)(
a2
1

)
+ 4

7

(
a3
5

)(
a1
1

)(
a2
1

)
+

1
21

(
a3
5

)(
a2
2

)
+ 8

21

(
a3
4

)(
a1
1

)(
a2
2

)
+ 2

7

(
a3
4

)(
a1
3

)
]/
(
30
7

)
And we can �nally express the probability for casting 4 on round as:

P (casting 4 on round 4) = 1− P (0)− P (1)− P (2)− P (3)

2.6 Expected Value

As mentioned in 1.5, expected value is calculated by multiplying probabilities by their

respective values in order to �nd the average result. We are looking to maximize our expected

value over 4 rounds of play by optimizing the number of 1, 2, 3, and 4-cost cards in our deck.

In order to maximize 4 rounds of play, we must calculate the expected value for each individual

19

round.

We can �nd the expected value of round 1 by adding the product of each probability

and its value. Intuitively, this equation makes sense; the average value of round 1 should be

the probability of getting a 1. Thus, the expected value looks like:

E(round 1) = 0 · P (0) + 1 · P (1)

The expected values of the following rounds all resemble round 1, with additional prob-

abilities and values for each round to account for the increased possibilities and values.

E(round 2) = 0 · P (0) + 1 · P (1) + 2 · P (2)

E(round 3) = 0 · P (0) + 1 · P (1) + 2 · P (2) + 3 · P (3))

E(round 4) = 0 · P (0) + 1 · P (1) + 2 · P (2) + 3 · P (3) + 4 · P (4)

Thus, we can �nd the total expected value over 4 rounds by adding the expected value

for each round:

E(total) = E(round 1) + E(round 2) + E(round 3) + E(round 4)

We were able to optimize this deck by coding our probabilities - see the Appendix for the

code used. Our code tests every possible distribution of cards where a1 + a2 + a3 + a4 = 30,

and �nds the case where the 4 round expected value is at a maximum. We found that in

order to maximize the expected value for 4 rounds, we need: a1 = 13, a2 = 12, a3 = 5, a4 = 0.

Additionally, we found the expected values for each round:

E(round 1) = 0.9132

E(round 2) = 1.9937

E(round 3) = 2.9984

E(round 4) = 3.9302

E(total) = 0.9132 + 1.9937 + 2.9984 + 3.9302 = 9.8355

20

3 Deck Optimization for Player 2

3.1 Round 1

As Hearthstone is game played between 2 players, it would be remiss to exclude calcu-

lations and optimization for the second player. These probabilities proved to be very slightly

di�erent, as for the most part, the only changes that occurred were related to the change

in hand size. Player 2 has 5 cards on round 1 as opposed to Player 1's 4, and thus 1 more

card every subsequent turn as well. This alters both the denominators representing total

probability and the fractions representing relevant order.

Thus, the total probability casting 0 on round 1 is:

P (casting 0 on round 1) =
(
a2+a3+a4

5

)
/
(
30
5

)
And the following probability for casting 1 on round 1 remains:

P (casting 1 on round 1) = 1− P (0)

3.2 Round 2

The changes in probabilities for round 2 are derived from the same explanations above,

thus the probabilities for casting 0, 1, and 2 on round 2 are:

P (casting 0 on round 2) = [
(
a3+a4

6

)
+ 5

6

(
a3+a4

5

)(
a1
1

)
]/
(
30
6

)
P (casting 1 on round 2) = [

(
a3+a4

4

)(
a1
2

)
+ 1

6

(
a3+a4

5

)(
a1
1

)
]/
(
30
6

)
P (casting 2 on round 2) = 1− P (0)− P (1)

21

3.3 Round 3

Round 3 requires similar changes to the previous rounds, however, the probability of

casting 2 on round 3 has 2 additional possible hands due to the additional card that player

2 has. Thus, the probabilities are:

P (casting 0 on round 3) = [
(
a4
7

)
+ 6

7

(
a4
6

)(
a1
1

)
+ 5

7

(
a4
5

)(
a1
2

)
+ 4

7

(
a4
4

)(
a1
3

)
+ 6

7

(
a4
6

)(
a2
1

)
+

25
42

(
a4
5

)(
a1
1

)(
a2
1

)
]/
(
30
7

)
The �nal case for casting 0 on round 3 was a slightly more involved calculation. The

5 4-cost cards are obviously uncastable on round 3. The requirements for this case to have

nothing to cast on round 3 are casting 1 the �rst round, 5
7
, and 2 the second round, 5

6
. Thus,

we have 5
7
5
6
= 25

42
.

P (casting 1 on round 3) = [1
7

(
a4
6

)(
a1
1

)
+ 2

7

(
a4
5

)(
a1
2

)
+ 3

7

(
a4
4

)(
a1
3

)
+
(
a4
3

)(
a1
4

)
+ 1

7

(
a4
5

)(
a1
1

)(
a2
1

)
+

17
21

(
a4
4

)(
a1
2

)(
a2
1

)
]/
(
30
7

)
The probability of casting 1 on round 3 given the case of 4 4-cost, 2 2-cost, and 1 1-cost

proved di�cult. Much like its Player 1 counterpart, we found orders that failed to cast 1.

Again, one set required the 2-cost to be the last card drawn, 1
7
, and one set required both 1-

cost cards to be the last 2 cards drawn, 2
7
1
7
. Summing these orders gives us 1

7
+ 2

7
1
7
= 8

42
= 4

21
.

Subtracting from 1 to properly account for the probabilities that will cast 1 rather than those

that will not, we have: 1− 4
21

= 17
21
.

P (casting 2 on round 3) = [1
7

(
a4
6

)(
a2
1

)
+ 1

7

(
a4
5

)(
a1
1

)(
a2
1

)
+ 1

7

(
a4
4

)(
a1
2

)(
a2
1

)
+

(
a4
3

)(
a1
3

)(
a2
1

)
+

5
7

(
a4
4

)(
a1
1

)(
a2
2

)
+ 5

7

(
a4
3

)(
a1
1

)(
a2
3

)
+ 5

7

(
a4
2

)(
a1
1

)(
a2
4

)
+ 5

7

(
a4
1

)(
a1
1

)(
a2
5

)
+ 5

7

(
a1
1

)(
a2
6

)
+
(
a4
5

)(
a2
2

)
+
(
a4
4

)(
a2
3

)
+(

a4
3

)(
a2
4

)
+
(
a4
2

)(
a2
5

)
+
(
a4
1

)(
a2
6

)
+
(
a2
7

)
]/
(
30
7

)
P (casting 3 on round 3) = 1− P (0)− P (1)− P (2)

22

3.4 Round 4

The probabilities for round 4 require similar changes. Casting 1 is now impossible given

the extra card Player 2 has in addition to the card drawn; the sum of their values must be

greater than 1. By that same reasoning, casting 2 for Player 2 is now the same as casting 1

for Player 1. Casting 3 remains similar for both players, with some altered cases due to hand

size.

P (casting 0 on round 4) = 0

P (casting 1 on round 4) = 0

P (casting 2 on round 4) =
(
a1
8

)
/
(
30
8

)
Several of the following probabilities are much more complex than the rest. 15

28
is found

from analyzing the case where the ordering cannot end with exactly 2 cards, each a non-

3-cost: 6
8
5
7
= 15

28
. 27

28
is calculated by �nding the 1 order where the speci�c case wouldn't

work, and subtracting from 1: 1− 2
8
1
7
= 27

28
. Finally, 135

224
comes from multiplying the previous

probability by 5
8
, to include the case where a 1-cost is drawn in the �rst 5 as well: 5

8
27
28

= 135
224

.

P (casting 3 on round 4) = [
(
a1
7

)(
a2
1

)
+ 6

8

(
a1
1

)(
a3
7

)
+ 15

28

(
a1
2

)(
a3
6

)
+ 15

28

(
a1
3

)(
a3
5

)
+
(
a3
8

)
+ 6

8

(
a2
1

)(
a3
7

)
+

27
28
)
(
a2
2

)(
a3
6

)
+ 5

8

(
a1
1

)(
a2
1

)(
a3
6

)
+ 135

224

(
a1
1

)(
a2
2

)(
a3
5

)
]/
(
30
8

)
P (casting 4 on round 4) = 1− P (0)− P (1)− P (2)− P (3)

3.5 Expected Value

The expected value calculations for Player 2 di�er only in probabilities, not in method.

Our equation remains:

E(total) = E(round 1) + E(round 2) + E(round 3) + E(round 4)

with all round-based expected values de�ned as they were previously. Using code similar to

23

that found in the Appendix, with adjusted probabilities for Player 2's probabilities, we are

able to �nd that the optimal distribution of cards was: a1 = 15, a2 = 10, a3 = 5, a4 = 0.

Thus, the new expected values are:

E(round 1) = 0.9789

E(round 2) = 1.9991

E(round 3) = 2.9988

E(round 4) = 3.9867

E(total) = 0.9789 + 1.9991 + 2.9988 + 3.9867 = 9.9635

24

4 Hero Power

Our research up to this point has neglected a unique element of Hearthstone, the hero

power. The hero power is a 2-cost ability given to both players that has a minor e�ect on

the game when used. It may only be used once per turn, and does not depend on any cards

in your hand. For our purposes, we shall assume the hero power provides the same value as

any 2-cost card.

The probabilities for both Player 1 and Player 2 with the hero power end revolve entirely

around prioritizing the use of the hero power, thus saving a card to use later. Essentially,

we can state that using the hero power is always better than casting some cards with a total

casting cost of 2. The hero power does not inhibit strategies for later rounds as it is reusable

every round, while casting cards may a�ect later play as cards can only be cast once per

game. This strategy simpli�es the probabilities greatly.

4.1 Player 1

The probabilities for round 1 with the hero power are the same as round 1 without, as

the hero power costs 2.

P (casting 0 on round 1) =
(
a2+a3+a4

4

)
/
(
30
4

)
P (casting 1 on round 1) = 1− P (0)

Using the hero power is always superior to playing cards, as you save those cards for

possible later use. Thus, for round 2,

P (casting 0 on round 2) = 0

P (casting 1 on round 2) = 0

P (casting 2 on round 2) = 1

25

The probabilities for round 3 are only nontrivial when calculating the likelihood of

casting 2. Any 1-cost or 3-cost cards would result in casting 3; recall that a 1-cost with the

hero power will cast 3. We then look for 2-cost and 4-cost cards, or cards played on round 1,

before a hero power could be used. Thus,

P (casting 0 on round 3) = 0

P (casting 1 on round 3) = 0

P (casting 2 on round 3) = [
(
a2+a4

6

)
+ 4

6

(
a2+a4

5

)(
a1
1

)
]/
(
30
6

)
P (casting 3 on round 3) = 1− P (2)

The probabilities for round 4 are straightforward. You will never cast 2, as any 1-cost or

2-cost card drawn on that round will be playable with the hero power for respective casting

cost of 3 or 4, and any 3-cost or 4-cost card drawn will simply be playable for its casting cost.

P (casting 0 on round 4) = 0

P (casting 1 on round 4) = 0

P (casting 2 on round 4) = 0

P (casting 3 on round 4) = [
(
a3
7

)
+ 4

7

(
a3
6

)(
a1
1

)
]/
(
30
7

)
P (casting 4 on round 4) = 1− P (3)

4.2 Player 2

The probabilities for Player 2 with a hero power are almost exactly the same as Player

1, with slightly altered fractions and probabilities to account for the change in hand size.

P (casting 0 on round 1) =
(
a2+a3+a4

4

)
/
(
30
5

)
26

P (casting 1 on round 1) = 1− P (0)

P (casting 0 on round 2) = 0

P (casting 1 on round 2) = 0

P (casting 2 on round 2) = 1

P (casting 0 on round 3) = 0

P (casting 1 on round 3) = 0

P (casting 2 on round 3) = [
(
a2+a4

7

)
+ 4

7

(
a2+a4

6

)(
a1
1

)
]/
(
30
6

)
P (casting 3 on round 3) = 1− P (2)

P (casting 0 on round 4) = 0

P (casting 1 on round 4) = 0

P (casting 2 on round 4) = 0

P (casting 3 on round 4) = [
(
a3
8

)
+ 5

8

(
a3
7

)(
a1
1

)
]/
(
30
7

)
P (casting 4 on round 4) = 1− P (3)

4.3 Work with Probabilities

The hero power calculations are trivial through 5 rounds of play with a deck of 30 1-cost

cards. We intended to calculate the probabilities for 6 rounds with a hero power for both

players. However, the hero power creates non-trivial decisions based on both deck and game

variance. A quick example to indicate this: you have played all your cards by round 5, and

draw a 4. You are presented with 2 distinct options. The hero power costs 2, which leaves

you unable to play both the 4-cost card and use the hero power. Therefore, do you play the

27

4-cost and miss out on the hero power, or do you use the hero power and save the 4-cost

card for later turns to get the maximum possible value out of the hero power? We can divide

these options into 2 di�erent paths. The �value� oriented path focuses on the maximum

amount of value, or total casting cost, across the entire game. In a scenario without the

hero power, this changes nothing, as we would still want to maximize our casting cost in

each round of play. However, with the hero power, maximizing the total casting cost across

all rounds now suggests that we should use the hero power every round, as this generates a

casting cost of 2 without having to use our �nite resource, cards. Thus, our value-oriented

path would calculate probabilities given that the hero power is used every round possible -

every round after the �rst. The �tempo� oriented path focuses on the other option in our

example - maximizing each round individually.

Tempo and value are 2 concepts frequently discussed in Hearthstone, and are not unique

to the hero power. As with the di�erent paths for the hero power, value promotes maximizing

each card's potential during the entirety of a game, while tempo essentially focuses on each

turn individually. Tempo sacri�ces value to gain immediate power in the game. Applying

these concepts to our research forces us to create 2 di�erent sets of probabilities, as determin-

ing which path to follow would be based on current hand, cards played, and cards remaining,

in addition to deck distribution. We would need to know the distribution of cards in the

deck to calculate the probabilities of �nding a better �value� play in later rounds, or whether

it would be best to make a �tempo� play in the current round. However, needing to know

deck distribution makes the decision essentially impossible to generalize. Such a necessity

certainly pushes it outside the scope of this research project; thus, the need for 2 approaches.

4.4 Value: Round 1

We begin by attempting to calculate 6 rounds of value-oriented play using the hero power

for Player 1. As we are calculating 6 rounds of play, we extend the card options to include

5 and 6-cost cards. The probabilities for rounds 1 and 2 are exactly the same as the hero

28

power calculations above when not using the value-oriented approach, aside from including

the 5's and 6's as unplayable. The hero power cannot be used in round 1, thus the following

is trivial.

P (casting 0 on round 1) =
(
a2+a3+a4+a5+a6

4

)
/
(
30
4

)
P (casting 1 on round 1) = 1− P (0)

4.5 Value: Round 2

Round 2 is also trivial, as using the hero power is always better than casting any com-

bination of cards. The use of the hero power guarantees additional saved cards for increased

�exibility in later rounds of play.

P (casting 0 on round 2) = 0

P (casting 1 on round 2) = 0

P (casting 2 on round 2) = 1

4.6 Value: Round 3

The value-oriented approach to round 3 is very similar to the original hero power calcula-

tions. Examining the �rst probability in P (2), the di�erence lies in which cards we can choose

from to create an unplayable hand. While 2, 4, 5, and 6-cost cards are obviously unplayable,

we are also prohibited from playing a 3-cost card. In the value-oriented approach, we use the

hero power every round that we can. Thus, we automatically cast 2 out of the total possible

casting cost of 3 this round. The only card that would force us to cast a di�erent value than

2 on round 3 is a 1-cost card, as we would be able to cast it along with the hero power for

a total casting cost of 3. Thus, the probabilities for casting 2 on round 2 are those without

access to a 1 on the third round.

P (casting 0 on round 3) = 0

P (casting 1 on round 3) = 0

P (casting 2 on round 3) = [
(
a2+a3+a4+a5+a6

6

)
+ 4

6

(
a2+a3+a4+a5+a6

5

)(
a1
1

)
]/
(
30
6

)
29

P (casting 3 on round 3) = 1− P (2)

4.7 Value: Round 4

Probabilities for round 4 follow similar reasoning to those from round 3. We discuss in

detail the most challenging calculation, the 2
3
from the third probability in P (2). Observe

�rst, this is for a hand of 2 1-cost cards and 5 cards not costed 1 or 2. To calculate this

fraction, we know that either of the 2 1-cost cards cannot be the last card drawn, as a 1-cost

card would be playable with the hero power to cast a value greater than 2. Thus one of the

other 5 cards must be drawn last, resulting in a fraction of 5
7
. However, given that we draw

one of the non 1-cost cards on round 4, there is still one case where we will be forced to cast

more than 2. If our previous 2 cards drawn are both 1-cost, we will not be able to use them

both by round 4. Examining this in detail, on round 2, we will always hero power. On round

3, we hero power and use a 1-cost card, thus having 1 leftover for round 4, guaranteeing that

we will cast at least 3 on round 4. We can express this total with 5
7
(1− 2

6
1
5
). This simpli�es

to 2
3
.

P (casting 0 on round 4) = 0

P (casting 1 on round 4) = 0

P (casting 2 on round 4) = [
(
a3+a4+a5+a6

7

)
+ 4

7

(
a3+a4+a5+a6

6

)(
a1
1

)
+ 2

3

(
a3+a4+a5+a6

5

)(
a1
2

)
]/
(
30
7

)
P (casting 3 on round 4) = [1

7

(
a3+a4+a5+a6

6

)(
a1
1

)
+ 2

7

(
a3+a4+a5+a6

5

)(
a1
2

)
+ 4

7

(
a3+a4+a5+a6

4

)(
a1
3

)
]/
(
30
7

)
P (casting 4 on round 4) = 1− P (3)− P (2)

4.8 Value: Round 5

Probabilities for round 5, both trivial and not, are similar to those calculated previously.

P (casting 0 on round 5) = 0

P (casting 1 on round 5) = 0

P (casting 2 on round 5) = [
(
a4+a5+a6

8

)
+ 7

8

(
a4+a5+a6

7

)(
a1
1

)
+ 6

8

(
a4+a5+a6

6

)(
a1
2

)
+ 5

8

(
a4+a5+a6

5

)(
a1
3

)
+

30

4
8

(
a4+a5+a6

4

)(
a1
4

)
+ 7

8

(
a4+a5+a6

7

)(
a2
1

)
+ 9

14

(
a4+a5+a6

6

)(
a1
1

)(
a2
1

)
+ 21

56

(
a4+a5+a6

5

)(
a1
2

)(
a2
1

)
]/
(
30
8

)
P (casting 3 on round 5) = [1

8

(
a4+a5+a6

7

)(
a1
8

)
+2

8

(
a4+a5+a6

6

)(
a1
2

)
+3

8

(
a4+a5+a6

5

)(
a1
3

)
+4

8

(
a4+a5+a6

4

)(
a1
4

)
+(

a4+a5+a6
3

)(
a1
5

)
+ 5

8

(
a4+a5+a6

6

)(
a1
1

)(
a2
1

)
+ 7

8

(
a4+a5+a6

5

)(
a1
2

)(
a2
1

)
+ 7

8

(
a4+a5+a6

4

)(
a1
3

)(
a2
1

)
]/
(
30
8

)
P (casting 4 on round 5) = [

(
a4+a5+a6

2

)(
a1
6

)
+ 1

8

(
a4+a5+a6

7

)(
a2
1

)
+
(
a4+a5+a6

6

)(
a2
2

)
+
(
a4+a5+a6

5

)(
a2
3

)
+(

a4+a5+a6
4

)(
a2
4

)
+
(
a4+a5+a6

3

)(
a2
5

)
+
(
a4+a5+a6

2

)(
a2
6

)
+
(
a4+a5+a6

1

)(
a2
7

)
+
(
a2
8

)
+ 1

8

(
a4+a5+a6

6

)(
a1
1

)(
a2
1

)
+

4
8

(
a4+a5+a6

4

)(
a1
3

)(
a2
1

)
+
(
a4+a5+a6

3

)(
a1
4

)(
a2
1

)
]/
(
30
8

)
P (casting 5 on round 5) = 1− P (4)− P (3)− P (2)

4.9 Round 6

We found the probabilities in round 6 to be much more di�cult and in depth than those

in the previous rounds. We worked through the probability of casting 4 on round 6 before we

determined it would be more worthwhile to generalize code before proceeding further with

non-computer calculated probabilities.

31

5 Optimization Code

We use MATLAB to code our work. MATLAB is a numerical computing language

designed for ease of work regarding matrices. Each of our 4 programs is between 250 and 350

lines long, and the explanation of each can be found later in this chapter, while the analysis

and comparisons of their respective runtimes are found in Chapter 6. All programs can be

found in the appendix.

5.1 Code: Player 1, 4 Rounds

Our �rst goal was to create code that would �nd the distribution which maximized the

average value across the �rst 4 rounds of play for player 1. Our initial attempt ran through 7

�for� loops to create an array that would model all possible hands, and another 3 �for� loops

designed to loop through all possible distributions of cards. Kathryn Sarullo helped us in

cutting down the amount of �for� loops used in my code. As we found out, 10 nested loops

makes the code take much longer than it should. Kathryn was able to �nd open source code

by Jos van der Geest that created a matrix containing all possible hands [5]. By removing

the 7 �for� loops that altered an array 47 = 16384 times for each distribution and instead

creating a matrix with 16384 rows, the runtime of our initial code decreased dramatically,

from 3.5 hours to less than 1.5 hours.

We then use 3 �for� loops to test for all possible distributions of cards, and use 1 more

to loop through the matrix created by the open source code. Another �for� loop used is for

the probability of any 1 hand actually occurring given the particular distribution of 1, 2, 3,

and 4-cost cards. This loop keeps track of the likelihood of each card occurring in that order

for each row of the matrix. After calculating the value of the game for that speci�c matrix

row, we multiply the probability of that hand occurring given the current distribution by

that game value.

The code for the �rst round of play is elementary. We begin by de�ning a variable r1 to

32

be the �rst 4 elements of our particular matrix row. This allows us to inspect the �rst 4 cards

of any given total hand, which are the cards that player 1 has access to on his �rst turn. Our

one conditional simply checks for the existence of a 1-cost card in r1. If it is found, we replace

the position of that 1-cost card with a 0, as to accurately re�ect the card's non-impact on

the coming rounds. We then increase gametotal, the variable tracking our total casting cost

for that particular hand, by 1 to indicate that we have cast a total of 1 on the �rst round.

Should a 1-cost card not be found in r1, nothing will happen, and the code for round 2 will

begin.

Round 2, and the rounds following, all perform essentially the same function, with later

rounds having slightly more complicated code. We begin by checking for the best possible

play on that round. For round 2, this would be casting a 2-cost card, done by checking for

the existence of a 2 in r2, de�ned as the �rst 5 elements of our matrix row. This represents

player 1 having access to 5 total cards on the second round of play. Additionally, we de�ne

ta2r1 to be a matrix of 0's and 1's, with 1's in ta2r1 representing where in our ar matrix row

the element is a 1. This is to check for the existence of multiple of a particular card, and will

be used in all subsequent rounds as well to represent a variety of card costs. Utilizing this,

we can now check for the next best play on round 2, should we lack a 2-cost, which is casting

a total of 2 by casting 2 1-cost cards. We look for the sum of ta2r1 to be greater than or

equal to 2. If this occurs, we �nd the �rst 2 elements of ta2r1 that are 1. We then set those

both to 0 to represent both 1-cost cards being cast, and increase gametotal by 2. The next

best option is simply checking for the existence of a 1 and incrementing gametotal by 1, and

�nally admitting that nothing is playable should all of those options fail.

Round 3 contains far more conditionals, but nothing new.

Round 4 contains similar code yet again, but a non-trivial choice for the ordering of the

conditionals. In the previous rounds, there was always a clear frontrunner, with casting a

2-cost on round 2 being clearly better than casting 2 1-costs, and casting a 3-cost on round 3

being clearly better than casting a 2-cost and a 1-cost, and both being better than casting 3

1-costs. However, while casting a 4-cost on round 4 is obviously the best option available, it is

33

not immediately clear whether it is better to cast a 3-cost and a 1-cost or 2 2-costs. Although

such a decision doesn't actually a�ect the result of this code at all, as it only computes up

to 4 rounds of play, and both of these options cast 4, this choice will a�ect what cards we

will have left in the following rounds, should both options be available to us. Determining

which option is superior relies on us knowing the current distribution of cards and what cards

have been played and drawn thus far, as we are looking to best optimize for what cards to

come. Again, this choice is far from trivial. Thus, for the time being, we simply chose 3-cost

and 1-cost to be checked for �rst, then 2 2-costs. It is worth addressing that there are other

options for casting 4 on round 4. Those options, while better than casting below 4, are clearly

worse than the previously discussed ones. Casting a 2-cost and 2 1-costs is clearly worse than

2 2-costs, and 4 1-costs worse than both of those. The reasoning, as stated earlier in the

paper, is due to the loss in �exibility. Low cost cards can be more easily combined with other

cards later in the game, while high cost cards struggle due to their innate in�exibility.

Finally, we calculate the sum of all of the products of each game total and the probability

of it occurring given a distribution. We track the distribution with this maximum expected

value and output both at the end of our code. This �best� distribution and respective expected

value are our results.

5.2 Code: Player 2, 4 Rounds

There were very few di�erences between code for player 1 and code for player 2 in 4

rounds of play. When using the open source code to create our matrix, we had to extend

the number of elements in each row from 7 to 8, to account for the extra card player 2

received every game. This increased the number of rows in the matrix from 47 = 16384 to

48 = 65536. Additionally, we had to adjust the code calculating the probability to account

for the increase in cards. We also had to adjust r1, r2, r3, and r4 to each include 1 additional

card, compensating again for the player 2's having access to 5 cards as opposed to 4 on the

�rst round, and 1 additional every subsequent round as well. However, the actual calculations

34

for determining the optimal distribution remain the same throughout this code.

5.3 Code: Player 1, 5 Rounds

The di�erences in this code are very similar to those presented for player 2, 4 rounds.

Again, we increased the matrix to account for access to that additional card. However, as we

entered 5 rounds of play, we also introduced the 5-cost card. Thus, the number of rows in

our ar matrix increased from 47 to 58 = 390625. This also caused us to make similar changes

to the probability section of the code. However, this time we had to add another conditional

accounting for the possibility that a5 could equal 0. The round variables match those present

in the player 1 code for 4 rounds, as player 1 does not have access to an additional card,

simply an additional round of play is introduced.

We did have to add a section to the main portion of code calculating the casting cost for

round 5. As with round 4, we ran into similar problems in the evaluation of which way to cast

certain values is actually better. Again, determining which method of casting a certain value

is better usually depends on �exibility. Casting a 5-cost card is always better than casting

5 1-cost cards, as those 1-cost cards are much more versatile and thus more easily combined

with other cards in the following rounds. However, evaluating a 4-cost and a 1-cost against

a 3-cost and a 2-cost is certainly non-trivial. This would again depend on our knowledge of

not only the current distribution but also what cards have been played so far, and thus what

cards we are more likely to draw and have a better chance of combining with these lower cost

cards to create better future rounds. Such analysis is beyond the scope of this project.

5.4 Code: Player 2, 4 Rounds, Coin

The coin is future predictive, meaning that accurately evaluating the coin and determin-

ing which turn is best to cast it would require us to not only know the distribution of cards

and what cards have been cast thus far, but also what cards we will draw. We can only truly

35

assess the coin after viewing our total hand over the course of the game, and retroactively

examining and determining on which turn it would have best been cast. Again, while the

coin only increases the maximum casting cost of a turn by 1, it can increase the total value of

a turn, and by result, the game, by more than 1. Thus, immediately casting the coin when a

possible increase in casting cost of 1 is detected would neglect future turns' possible increase

in casting value of more than 1. This logic extends to casting 2, as perhaps a turn passes

after we have used the coin, and we have only 4-cost cards on round 3, and thus miss a total

casting cost of 3 on that round.

As a result of the coin's nature to require future values, we have chosen a �dumb�

algorithm instead. While this �x will not perfectly optimize the code, it attempts to evaluate

and rank the usage of the coin compared to the other possible card combinations on any

given round. We begin by declaring coin = 1, a variable that will indicate the existence of

the coin throughout each game. Whenever the code uses the coin, it will set the value of coin

to 0, indicating to future rounds that the coin has been used. By coding to not only check for

the existence of certain cards in a given round but also the coin, we can evaluate the proper

round usage for this particular �dumb� algorithm.

We position the check for the coin in round 1 after the possibility of being able to cast

1, and before the possibility of having nothing to cast. We check for the value of the coin to

still be 1 as to maintain structure used throughout the rest of the code with the coin, and

there to be at least 2 2-cost cards in r1. Our method essentially says, �You may cast the coin

if you cannot cast a 1, but you must also have the ability to cast a 2 both this round and the

next.� We check for the existence of another 2-cost card as to not waste the coin. If we were

to simply attempt to �nd 1 2-cost card, we may have nothing to cast the following round. In

this particular situation, we would end up casting the same amount of value using the coin -

round 1: coin + 2, round 2: 0, as not using the coin - round 1: 0, round 2: 2. This situation

clearly wastes the coin's potential to be used in a subsequent round. We do not check for

combinations of cards creating a total casting cost 2, as the only combination of cards would

be 2 1-costs, and we have already determined this particular coin usage �worse� than that

36

of 1 1-cost. Should we use the coin, we will have not found a 1-cost, thus we will not have

found 2-costs by the same token. Using the coin here would increase gametotal by 2, and

guarantee our ability to cast 2 on the following round as well.

In round 2, we position the check for the coin after all possible ways to cast 2. We

attempt to �nd a similar hand here, looking in r2 for the existence of 2 ways to cast 3, either

2 3-cost cards or 3-cost, 2-cost, 1-cost. We do not check for 1 2 and 1 2 or 3 and 1 1 1 as those

possibilities are already covered previously in the round by the code checking the 2 1-cost

cards in order to cast 2 on round 2. We also check for the value of the coin to still be 1, as to

ascertain that it has not been already used in round 1. Should these conditions all be true,

we would use the coin and increase the game total by 3, knowing that we would also be able

to cast 3 on the following round. This process is repeated in the same position for rounds 3

and 4, with a slight modi�cation in the round 4 code. As we are not yet using 5-cost cards

for our 4 round game, we instead check for a 3-cost and a 2-cost card on only round 4. No

other combination of cards exists with our checking of the various ways to cast 4 on round

4. Our game ends at 4 rounds, so looking for multiple card combinations summing to 5 is

unnecessary.

Finally, we check at the end of the set of conditionals to ensure that the coin indeed has

been used. If it has not, we increment gametotal by 1 to account for our not using it and it

having innately a value of 1. Thus, the expected value of the coin will have a maximum of

11 rather than 10. Our code re�ects this change as well.

37

6 Results

6.1 Player 1, 4 Rounds

The results from the code for player 1 with 4 rounds of play are:

maxetotal = 9.7417

max1 = 15

max2 = 7

max3 = 6

max4 = 2

For a complete summarization of results, see Table 1 in section 6.6.

This indicates that for player 1, solely examining play through 4 rounds, the optimal

distribution of a deck of 30 cards for such a player would be 15 1-costs, 7 2-costs, 6 3-costs,

and 2 4-cost cards, resulting in an average game total of 9.7417 out of a possible 10. Similar

to our work last semester, the distribution found has a much larger amount of 1-cost cards

than any other cost. This is due to the respective brevity of this speci�c game. 4 rounds of

play is very few for a game of Hearthstone. Thus, the impact a 1-cost card has on the game

is far greater than it would be were we to attempt to calculate the same variables for a game

with 10 rounds of play. By a similar token, as there are only 4 rounds, the maximum value for

any 1 game is 10. Failing to maximize your casting cost by even 1-cost on any round already

yields an etotal, the expected value of a particular distribution, of only 9. Thus, failing to

have at least 1 1-cost card in your hand on the �rst round already drops your etotal to 9. We

assume that this large amount of 1-cost cards in the optimal distribution is mainly due to its

great e�ect on ensuring our maximization of total casting cost on the �rst round. However, as

mentioned earlier in this paper, too many 1-costs approaches the trivial solution of 30 1-cost

cards, which only allows for an etotal of 7, far below our goal of 10. 15 1-cost cards de�nes

that necessary balance between ensuring total casting cost is maximized on round 1 and not

running out of cards to play by round 4. The amount of 2, 3, and 4-cost cards decreasing

38

in that order is also to be expected. The innate �exibility of lower cost cards means that

having respectively more of them should have a greater chance of maximizing your etotal

every game.

Our calculated maxetotal of 9.7417 again indicates that this distribution we found is

the �best� at maximizing our total casting cost. This �best� was found by taking the product

of the value casted for a particular hand and the probability of that hand occurring, then

taking the sum of those products for 1 distribution, and �nally �nding the distribution that

had the largest sum. The 9.7417 suggests that player 1, with a deck of 30 cards with the above

distribution, should usually get a game total of 10. Proportionally, we �nd 10 − 9.7417 =

.2583, yielding .2583
10

= .02583, or 2.583%, indicating that this distribution is good, but not

exceptional.

6.2 Player 2, 4 Rounds

The results from the code for player 2 with 4 rounds of play are:

maxetotal = 9.9527

max1 = 16

max2 = 8

max3 = 5

max4 = 1

For player 2, the optimal distribution of a 30 card deck is 16 1-costs, 8 2-costs, 5 3-costs,

and 1 4-cost, resulting in an average game total of 9.9527. Recall that the only di�erence

between player 1 and player 2 is the turn order of Hearthstone, and the game's attempt to

compensate. To account for player 2 taking the second turn, she also receives an extra card

in her hand on round 1, and by extension every round. Player 1 has, or had, access to a total

of 4 cards on round 1, 5 on round 2, 6 on round 3, etc. Player 2, by contrast, had 5 cards on

round 1, 6 on round 2, 7 on round 3, etc. This access to an extra card each round is the only

di�erence between these 2 calculations. We attempt to emphasize this point because while

39

the changes in the distribution may not be extreme, the increase in maxetotal is astonishing.

Player 1's maxetotal of 9.7417 was already very close to the perfect game of 10. 10 as

an average should be impossible to achieve unless the solution is trivial and thus the same

hand is always drawn. Thus, our maxetotal of 9.9527 for player 2 showcases just how good

this distribution is at maximizing casting cost every round. By only shifting 2 cards, a 3

and 4-cost to a 1 and 2-cost, and increasing the hand size by 1, the average game result

for our distribution improved by .211, a 2.166% increase on player 1's 9.7417. It is worth

noting that again, for a small amount of rounds, lower cost cards are superior to higher cost

cards. Lower cost cards improve �exibility and the ability to cast 1 on the �rst turn, but

also increase the likelihood of your running out of cards down the road. Such a situation is

obviously preferable in games with fewer rounds. Calculating proportionally again, we �nd

10 − 9.9527 = .0473, yielding .0473
10

= .00473, or .473%. This distribution clearly is much

better than that for player 1 with 4 rounds, as .473 < 2.583.

6.3 Player 1, 5 Rounds

The results from the code for player 1 with 5 rounds of play are:

maxetotal = 14.3027

max1 = 9

max2 = 9

max3 = 7

max4 = 5

max5 = 0

For player 1 and 5 rounds of play, the optimal distribution of a 30 card deck is 9 1-costs,

9 2-costs, 7 3-costs, 5 4-costs, and 0 5-costs, resulting in an average game total of 14.3027. A

�fth round obviously changes the variables drastically. With the inclusion of this �fth round,

the new optimal distribution must attempt to balance our previous concerns, having a 1-cost

card on the �rst round and �exibility to cast later, against new concerns, running out of cards

40

to actually maximize casting cost on a later round. This new concern is the primary reason

for a much more even distribution across 1, 2, 3, and 4-cost cards. The exclusion of 5-cost

cards from this optimal distribution indicates that while accounting for an additional round

certainly requires changes, the inability of the 5-cost card to be cast on any other round

outweighs its guarantee of maximizing that �fth round. The 5-cost card for a game going up

to 5 rounds of play is easily compared to a 4-cost card for a game going up to only 4 rounds

of play. We can see by comparison that the optimal distributions for an n-cost card, where

n is the highest round calculated for that game, are going to tend towards 0. We can expect

this trend to continue should we increase n further. Again, this is due to our inability to

cast an n-cost card on any round but the �nal one. This restriction appears severe enough

to limit our n-cost cards distinctly from the rest of the distribution.

The new maxetotal value of 14.3027 is proportionally much worse than either of our

previous calculations. Recall that our best possible game will now have a total casting

cost of 15 rather than 10. Proportionally, we can then see that 15 − 14.3027 = .6973, and

that .6973
15

= .04649, or 4.649%. Comparing results from the previous games, we can see

4.649 > 2.583 > .473. Our new distribution's maxetotal is much further away from the best

possible game than either of the two previous distributions with their respective games.

6.4 Player 2, 4 Rounds, Coin

The results from the code for player 2 with 4 rounds of play and the coin are:

maxetotal = 10.9857

max1 = 14

max2 = 8

max3 = 6

max4 = 2

For player 2 and 4 rounds of play with the coin, the optimal distribution of a 30 card

deck is 14 1-costs, 8 2-costs, 6 3-costs, and 2 4-costs, resulting in an average game total of

41

10.9857. These results are very similar to those yielded by both player 1 and player 2 in 4

rounds without the coin. The small di�erences between games can be explained with the

introduction of the coin. Note the decrease in 1-cost cards to 14, and recall the change in the

code on round 1. After searching for and failing to �nd a 1-cost card in our opening hand of

5 cards, without the coin we would note a total value cast of 0 on round 1. However, with the

coin, after searching for and failing to �nd that 1-cost card on round 1, we have the option to

search for 2 2-cost cards. Take this optimal distribution for example, and note the given that

our hand of 5 cards on round 1 has no 1-cost cards. Thus, our 5 card hand is made up of some

combination of 2, 3, and 4-cost cards. In order to still cast value on round 1, and guarantee

value on round 2, we must have 2 2-cost cards in this 5 card hand. Calculating this probability

gives us [
(
8
2

)(
8
3

)
]/
(
16
5

)
= 14

39
= .3590 = 35.90%. Given this distribution, and no 1-cost cards in

the hand on round 1, there is still a 35.90% chance that we are able to cast 2 on round 1, and

2 again on round 2, thus not failing to cast value on either turn, where without the coin we

would have missed at least 1 casting cost on the �rst round. Further, the probability that we

fail to get at least 1 1-cost card on the �rst round is [
(
16
5

)
]/
(
30
5

)
= 8

261
= .0307 = 3.07 percent.

Additionally, 35.90% of the time that we do indeed fail to cast a 1-cost card on round 1, we

are able to utilize the coin to make up for it. Thus, the probability that we are unable to

cast 1 on round 1 or use the coin to cast 2 with the guarantee of also being able to cast 2

on the second round is 25
39

8
261

= 200
10179

= .0196 = 1.96%. With this distribution, we are only

unable to cast anything on round 1 1.96% of the time. This calculation showcases why our

maxetotal for this round is so close to the perfect game value of 11. The coin, in combination

with a starting hand of 5 rather than that of 4, appears to create a stalwart and consistent

deck that produces perfect games far more often than not.

Examining the maxetotal value of 10.9857, we see that 11− 10.9857 = .0143, and that

.0143
11

= .0013, or .13%. Comparing this result with our previous coding proportions, we see

that .13 < .473 < 2.583 < 4.649. The distribution found for player 2 and 4 rounds with the

coin improves upon our best code measured proportionally. This distribution gets even closer

to always resulting in the optimal game of 11 than the previous best one did to 10. This

further indicates how e�ective the coin is at improving upon a player's �curve,� meaning how

42

well they can maximize their casting cost each turn throughout the game.

6.5 Code Runtimes

The runtimes for the 4 programs are as follows:

Player 1, 4 Rounds: 4676.876 seconds

Player 2, 4 Rounds: 18754.203 seconds

Player 1, 5 Rounds: 198000 seconds

Player 2, 4 Rounds, Coin: 22533.664 seconds

The most notable point to make regarding our code is just how much faster the �nal

iteration is than the �rst attempted iteration. As discussed earlier, our �rst attempt at code

for player 1 and 4 rounds did not use the open source code, and instead ran through an

additional 7 �for� loops to create the array ar which represented the hand for the particular

game. This code for player 1 and 4 rounds took approximately 3.5 hours to run, well over

twice as long as the current 78 minutes. This massive reduction in runtime a�ected not only

the player 1 code, but the code for all di�erent games run.

The di�erence in runtimes is entirely expected and numerically calculable. Examining

the di�erence between the p1 and p2 code, we can see that p1 takes 4676.876 seconds to run,

while p2 takes 18754.203 seconds. We also notice that 18754.203
4676.876

= 4.010. That is, the code

for player 2 takes almost exactly 4 times as long to run as it does for p1. This increase in

runtime makes perfect sense; recall the di�erence between the p1 and p2 code. The only

disparity between them is the extra card received for player 2 throughout the game. This

card increases each row of the matrix created by the source code from a length of 7 to a

length of 8. Recalling again that in both instances, 1, 2, 3, and 4-cost cards are the only

available cards in a player's deck, we note that the number of unique hands has increased

from 47 to 48, an increase by a factor of 4, almost perfectly matching the increase in runtime

by a factor of 4.01.

43

Comparing p2 and p2coin, we can see an increase by a factor of 22533.664
18754.203

= 1.202, or

roughly a 20% increase. It is certainly more di�cult to pinpoint exactly where the increase

in runtime came from. Observe the number of conditional statements in our p2 code: 25. Now

observe the number of conditionals added to that code to get the p2coin code: 5, for a total

of 30. By calculating the proportional increase to be 30
25

= 1.200. This value is almost exactly

equal to the proportional increase in runtime of 1.202; there is only a di�erence of .002. Thus,

we can assume the increase in runtime came directly from the increase in conditionals.

Finally, we made a mistake calculating the runtime for player 1 and 5 rounds, p1r5,

and thus only have an approximate of roughly 55 hours, or around 198000 seconds. This

code is easiest to compare to the player 1, 4 round code. There are 2 noticeable di�erences,

both of those previously mentioned. As we have increased to 5 rounds, we see large change

in the matrix. We now have access to 8 cards, thus an increase in length of each row

of the matrix from 7 to 8. Additionally, we are now able to use 5-cost cards, thus each

element has 5 possibilities for what it may be. Thus, we see a proportional increase of

58

47
= 23.842. A matrix nearly 24 times the size of our previous one for p1 should have an e�ect

similar to increase the runtime by around 24 times. We have also increased the number of

conditionals in our code by 18, from 25 to 43. This increase, represented proportionally, looks

like 43
25

= 1.720. Taking our original runtime of p1 of 4676.876 seconds, we can attempt to �nd

the approximate value for the new runtime of p1r5 by multiplying this value by our calculated

proportional increases. We are able to �nd that 4676.876·23.842·1.720 = 191790.453 seconds,

approximately. Converting to hours, our calculation yields 53.275 hours, very close to our

original approximate. Thus, we can conclude that the increase in runtime is most likely

directly related to the increase in both matrix size and number of conditional statements.

We can also estimate the runtime for player 2 given 5 rounds of play. Take the estimated

runtime for p1r5, 191790. Note that the only di�erence between player 1 and player 2 is the

additional card given to the second player. Thus, the expansion of the matrix from 58 to 59

should result in a correlated increase in runtime by a factor of 5: 191790 ·5 = 958950 seconds,

or 266.375 hours.

44

6.6 Summary of Results

Our computer results are summarized in the table below.

Table 1: Summary of Results

Rounds Player 1 Player 2

4 E(total)=9.7417

a1=15

a2=7

a3=6

a4=2

runtime=1.30 hours

E(total)=9.9527

a1=16

a2=8

a3=5

a4=1

runtime=5.21 hours

5 E(total)=14.3027

a1=9

a2=9

a3=7

a4=5

a5=0

runtime=55 hours

Computationally

Infeasible

4 + Coin Player 1 does not get

the coin

E(total)=10.9857

a1=14

a2=8

a3=6

a4=2

runtime=6.26 hours

45

7 Future Work

7.1 Hero Power

While we attempted to calculate probabilities by hand for the hero power, and did so

successfully through 5 rounds of play, such a solution is still trivial. Creating algorithms for

both the �tempo� and �value� hero power lines of play and determining which is better for

the situations we have currently coded is certainly an option for future work.

7.2 Optimization of Probability

At the beginning of this research, we choose to optimize the expected value across 4

rounds of play. The other option we were considering was �nding the distribution of cards

such that it maximized the probability of playing perfectly over those 4 rounds. While the

probabilities for each playable case would remain the same, we would be looking at cases

that enable each player to cast �on curve� every single turn. Playing on curve is a phrase

coined from numerous games similar to Hearthstone, and represents casting a total of n on

round n. While obviously playing on curve would be the optimal result in the research we

conducted this semester, �nding the distribution to maximize the probability that a player

can cast perfectly every turn would likely have focus on di�erent areas, mainly the �rst and

�nal rounds, as those are the ones with the greatest chance of missing a casting cost.

46

8 Appendix

8.1 Code: Player 1, 4 rounds

c l e a r ;
c l c ;
c l o s e ;

%c r ea t e matrix
v = [1 2 3 4] ;
v1 = {v , v , v , v , v , v , v } ;
v2 = allcomb (v1 { : }) ;

%de c l a r e va lue s
probdenom = (30∗29∗28∗27∗26∗25∗24) ;
e = 0 ;
c=30;
maxetotal=0;
e t o t a l =0;
max1=0;
max2=0;
max3=0;
max4=0;

%t e s t f o r a l l p o s s i b l e d i s t r i b u t i o n s o f cards
f o r a1=0: c

f o r a2=0:c−a1
f o r a3=0:c−a1−a2

a4=c−a1−a2−a3 ;
%loop through the matrix
f o r i = 1 : s i z e (v2 , 1)

ar = v2 (i , :) ;

%s e t temp va lue s
gametotal = 0 ;
prob = 1/probdenom ;
tempa1=a1 ;
tempa2=a2 ;
tempa3=a3 ;
tempa4=a4 ;
%c a l c u l a t e p r obab i l i t y f o r each hand o f cards e x i s t i n g
f o r j =1:7

i f ar (j)==1
i f a1==0

prob=0;
e l s e

prob=prob∗a1 ;
a1=a1−1;

end
e l s e i f ar (j)==2

i f a2==0
prob=0;

e l s e
prob=prob∗a2 ;
a2=a2−1;

end
e l s e i f ar (j)==3

i f a3==0
prob=0;

e l s e
prob=prob∗a3 ;
a3=a3−1;

end
e l s e i f ar (j)==4

i f a4==0
prob=0;

e l s e
prob=prob∗a4 ;
a4=a4−1;

47

end
end

end
r1 = ar (1 : 4) ;
%round 1
i f (ismember (1 , r1))

a1r1 = f i nd (r1==1 ,1);
ar (a1r1) = 0 ;
%disp ('Round 1 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 1 : Could not play anything : (')

end
r2 = ar (1 : 5) ;
%round 2
ta2r1 = (r2==1);
i f (ismember (2 , r2))

a2r2 = f i nd (r2==2 ,1);
ar (a2r2) = 0 ;
%disp ('Round 2 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)>=2)
a2r11 = f i nd (ta2r1 ==1 ,2);
ar (a2r11) = 0 ;
%disp ('Round 2 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)==1)
a2r1 = f i nd (ta2r1 ==1 ,1);
ar (a2r1) = 0 ;
%disp ('Round 2 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 2 : Could not play anything : (')

end
r3 = ar (1 : 6) ;
%round 3
ta3r1 = (r3==1);
i f (ismember (3 , r3))

a3r3 = f i nd (r3==3 ,1);
ar (a3r3) = 0 ;
%disp ('Round 3 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3) && ismember (1 , r3))
a3r2 = f i nd (r3==2 ,1);
a3r1 = f i nd (r3==1 ,1);
ar (a3r2)=0;
ar (a3r1)=0;
%disp ('Round 3 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta3r1)>=3)
a3r111 = f i nd (ta3r1 ==1 ,3);
ar (a3r111) = 0 ;
%disp ('Round 3 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3))
a3r2 = f i nd (r3==2 ,1);
ar (a3r2)=0;
%disp ('Round 3 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==2)
a3r11 = f i nd (ta3r1 ==1 ,2);
ar (a3r11) = 0 ;
%disp ('Round 3 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==1)
a3r1 = f i nd (ta3r1 ==1 ,1);
ar (a3r1) = 0 ;
%disp ('Round 3 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 3 : Could not play anything : (') ;

end
r4 = ar (1 : 7) ;

48

%round 4
ta4r2 = (r4==2);
ta4r1 = (r4==1);
i f (ismember (4 , r4))

a4r4 = f i nd (r4==4 ,1);
ar (a4r4) = 0 ;
%disp ('Round 4 : Played a 4 ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r4) && ismember (1 , r4))
a4r3 = f i nd (r4==3 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r3)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 3 and a 1 ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r2)>=4)
a4r22 = f i nd (ta4r2 ==1 ,2);
ar (a4r22) = 0 ;
%disp ('Round 4 : Played 2 2 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (2 , r4) && sum(ta4r1)>=2)
a4r2 = f i nd (r4==2 ,1);
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r2)=0;
ar (a4r11)=0;
%disp ('Round 4 : Played a 2 and 2 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r1)>=4)
a4r1111 = f i nd (ta4r1 ==1 ,4);
ar (a4r1111) = 0 ;
%disp ('Round 4 : Played 4 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r4))
a4r3 = f i nd (r4==3 ,1);
ar (a4r3)=0;
%disp ('Round 4 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4) && ismember (1 , r4))
a4r2 = f i nd (r4==2 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r2)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta4r1)==3)
a4r111 = f i nd (ta4r1 ==1 ,3);
ar (a4r111) = 0 ;
%disp ('Round 4 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4))
a4r2 = f i nd (r4==2 ,1);
ar (a4r2)=0;
%disp ('Round 4 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==2)
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r11) = 0 ;
%disp ('Round 4 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==1)
a4r1 = f i nd (ta4r1 ==1 ,1);
ar (a4r1) = 0 ;
%disp ('Round 4 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 4 : Could not play anything : (') ;

end
tempetota l=gametotal ∗prob ;
e t o t a l=e t o t a l+tempetota l ;

a1=tempa1 ;
a2=tempa2 ;
a3=tempa3 ;

49

a4=tempa4 ;

end
i f e t o ta l >maxetotal

maxetotal=e t o t a l ;
max1=tempa1 ;
max2=tempa2 ;
max3=tempa3 ;
max4=tempa4 ;

end
tempetota l =0;
e t o t a l =0;

end
end

end

maxetotal
max1
max2
max3
max4

8.2 Code: Player 2, 4 Rounds

c l e a r ;
c l c ;
c l o s e ;

%c r ea t e matrix
v = [1 2 3 4] ;
v1 = {v , v , v , v , v , v , v , v } ;
v2 = allcomb (v1 { : }) ;

%de c l a r e va lue s
probdenom = (30∗29∗28∗27∗26∗25∗24∗23) ;
c=30;
maxetotal=0;
e t o t a l =0;
max1=0;
max2=0;
max3=0;
max4=0;

%t e s t f o r a l l p o s s i b l e d i s t r i b u t i o n s o f cards
f o r a1=0: c

f o r a2=0:c−a1
f o r a3=0:c−a1−a2

a4=c−a1−a2−a3 ;
%loop through the matrix
f o r i = 1 : s i z e (v2 , 1)

ar = v2 (i , :) ;

%s e t temp va lue s
gametotal = 0 ;
prob = 1/probdenom ;
tempa1=a1 ;
tempa2=a2 ;
tempa3=a3 ;
tempa4=a4 ;
f o r j =1:8

i f ar (j)==1
i f a1==0

prob=0;
e l s e

prob=prob∗a1 ;

50

a1=a1−1;
end

e l s e i f ar (j)==2
i f a2==0

prob=0;
e l s e

prob=prob∗a2 ;
a2=a2−1;

end
e l s e i f ar (j)==3

i f a3==0
prob=0;

e l s e
prob=prob∗a3 ;
a3=a3−1;

end
e l s e i f ar (j)==4

i f a4==0
prob=0;

e l s e
prob=prob∗a4 ;
a4=a4−1;

end
end

end
r1 = ar (1 : 5) ;
%di sp (ar) ;
%round 1
i f (ismember (1 , r1))

a1r1 = f i nd (r1==1 ,1);
ar (a1r1) = 0 ;
%disp ('Round 1 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 1 : Could not play anything : (')

end
r2 = ar (1 : 6) ;
%round 2
ta2r1 = (r2==1);
i f (ismember (2 , r2))

a2r2 = f i nd (r2==2 ,1);
ar (a2r2) = 0 ;
%disp ('Round 2 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)>=2)
a2r11 = f i nd (ta2r1 ==1 ,2);
ar (a2r11) = 0 ;
%disp ('Round 2 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)==1)
a2r1 = f i nd (ta2r1 ==1 ,1);
ar (a2r1) = 0 ;
%disp ('Round 2 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 2 : Could not play anything : (')

end
r3 = ar (1 : 7) ;
%round 3
ta3r1 = (r3==1);
i f (ismember (3 , r3))

a3r3 = f i nd (r3==3 ,1);
ar (a3r3) = 0 ;
%disp ('Round 3 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3) && ismember (1 , r3))
a3r2 = f i nd (r3==2 ,1);
a3r1 = f i nd (r3==1 ,1);
ar (a3r2)=0;
ar (a3r1)=0;
%disp ('Round 3 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta3r1)>=3)

51

a3r111 = f i nd (ta3r1 ==1 ,3);
ar (a3r111) = 0 ;
%disp ('Round 3 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3))
a3r2 = f i nd (r3==2 ,1);
ar (a3r2)=0;
%disp ('Round 3 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==2)
a3r11 = f i nd (ta3r1 ==1 ,2);
ar (a3r11) = 0 ;
%disp ('Round 3 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==1)
a3r1 = f i nd (ta3r1 ==1 ,1);
ar (a3r1) = 0 ;
%disp ('Round 3 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 3 : Could not play anything : (') ;

end
r4 = ar (1 : 8) ;
%round 4
ta4r2 = (r4==2);
ta4r1 = (r4==1);
i f (ismember (4 , r4))

a4r4 = f i nd (r4==4 ,1);
ar (a4r4) = 0 ;
%disp ('Round 4 : Played a 4 ! ') ;
gametotal = gametotal+4;

%ques t i on 1 : would you ra the r played 3 ,1 or 2 ,2?
e l s e i f (ismember (3 , r4) && ismember (1 , r4))

a4r3 = f i nd (r4==3 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r3)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 3 and a 1 ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r2)>=4)
a4r22 = f i nd (ta4r2 ==1 ,2);
ar (a4r22) = 0 ;
%disp ('Round 4 : Played 2 2 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (2 , r4) && sum(ta4r1)>=2)
a4r2 = f i nd (r4==2 ,1);
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r2)=0;
ar (a4r11)=0;
%disp ('Round 4 : Played a 2 and 2 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r1)>=4)
a4r1111 = f i nd (ta4r1 ==1 ,4);
ar (a4r1111) = 0 ;
%disp ('Round 4 : Played 4 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r4))
a4r3 = f i nd (r4==3 ,1);
ar (a4r3)=0;
%disp ('Round 4 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4) && ismember (1 , r4))
a4r2 = f i nd (r4==2 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r2)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta4r1)==3)
a4r111 = f i nd (ta4r1 ==1 ,3);
ar (a4r111) = 0 ;
%disp ('Round 4 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

52

e l s e i f (ismember (2 , r4))
a4r2 = f i nd (r4==2 ,1);
ar (a4r2)=0;
%disp ('Round 4 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==2)
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r11) = 0 ;
%disp ('Round 4 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==1)
a4r1 = f i nd (ta4r1 ==1 ,1);
ar (a4r1) = 0 ;
%disp ('Round 4 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 4 : Could not play anything : (') ;

end
tempetota l=gametotal ∗prob ;
e t o t a l=e t o t a l+tempetota l ;

a1=tempa1 ;
a2=tempa2 ;
a3=tempa3 ;
a4=tempa4 ;

end
i f e t o ta l >maxetotal

maxetotal=e t o t a l ;
max1=tempa1 ;
max2=tempa2 ;
max3=tempa3 ;
max4=tempa4 ;

end
tempetota l =0;
e t o t a l =0;

end
end

end

maxetotal
max1
max2
max3
max4

8.3 Code: Player 1, 5 Rounds

% c l e a r ;
c l c ;
c l o s e ;

%c r ea t e matrix
v = [1 2 3 4 5] ;
v1 = {v , v , v , v , v , v , v , v } ;
v2 = allcomb (v1 { : }) ;

%de c l a r e va lue s
probdenom = (30∗29∗28∗27∗26∗25∗24∗23) ;
c=30;
maxetotal=0;
e t o t a l =0;
max1=0;
max2=0;
max3=0;

53

max4=0;
max5=0;

%t e s t f o r a l l p o s s i b l e d i s t r i b u t i o n s o f cards
f o r a1=0: c

f o r a2=0:c−a1
f o r a3=0:c−a1−a2

f o r a4=0:c−a1−a2−a3
a5=c−a1−a2−a3−a4 ;

%loop through the matrix
f o r i = 1 : s i z e (v2 , 1)

ar = v2 (i , :) ;

%s e t temp va lue s
gametotal = 0 ;
prob = 1/probdenom ;
tempa1=a1 ;
tempa2=a2 ;
tempa3=a3 ;
tempa4=a4 ;
tempa5=a5 ;
f o r j =1:8

i f ar (j)==1
i f a1==0

prob=0;
e l s e

prob=prob∗a1 ;
a1=a1−1;

end
e l s e i f ar (j)==2

i f a2==0
prob=0;

e l s e
prob=prob∗a2 ;
a2=a2−1;

end
e l s e i f ar (j)==3

i f a3==0
prob=0;

e l s e
prob=prob∗a3 ;
a3=a3−1;

end
e l s e i f ar (j)==4

i f a4==0
prob=0;

e l s e
prob=prob∗a4 ;
a4=a4−1;

end
e l s e i f ar (j)==5

i f a5==0
prob=0;

e l s e
prob=prob∗a5 ;
a5=a5−1;

end
end

end
r1 = ar (1 : 4) ;
%di sp (ar) ;
%round 1
i f (ismember (1 , r1))

a1r1 = f i nd (r1==1 ,1);
ar (a1r1) = 0 ;
%disp ('Round 1 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 1 : Could not play anything : (')

end
r2 = ar (1 : 5) ;
%round 2
ta2r1 = (r2==1);

54

i f (ismember (2 , r2))
a2r2 = f i nd (r2==2 ,1);
ar (a2r2) = 0 ;
%disp ('Round 2 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)>=2)
a2r11 = f i nd (ta2r1 ==1 ,2);
ar (a2r11) = 0 ;
%disp ('Round 2 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)==1)
a2r1 = f i nd (ta2r1 ==1 ,1);
ar (a2r1) = 0 ;
%disp ('Round 2 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 2 : Could not play anything : (')

end
r3 = ar (1 : 6) ;
%round 3
ta3r1 = (r3==1);
i f (ismember (3 , r3))

a3r3 = f i nd (r3==3 ,1);
ar (a3r3) = 0 ;
%disp ('Round 3 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3) && ismember (1 , r3))
a3r2 = f i nd (r3==2 ,1);
a3r1 = f i nd (r3==1 ,1);
ar (a3r2)=0;
ar (a3r1)=0;
%disp ('Round 3 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta3r1)>=3)
a3r111 = f i nd (ta3r1 ==1 ,3);
ar (a3r111) = 0 ;
%disp ('Round 3 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3))
a3r2 = f i nd (r3==2 ,1);
ar (a3r2)=0;
%disp ('Round 3 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==2)
a3r11 = f i nd (ta3r1 ==1 ,2);
ar (a3r11) = 0 ;
%disp ('Round 3 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==1)
a3r1 = f i nd (ta3r1 ==1 ,1);
ar (a3r1) = 0 ;
%disp ('Round 3 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 3 : Could not play anything : (') ;

end
r4 = ar (1 : 7) ;
%round 4
ta4r2 = (r4==2);
ta4r1 = (r4==1);
i f (ismember (4 , r4))

a4r4 = f i nd (r4==4 ,1);
ar (a4r4) = 0 ;
%disp ('Round 4 : Played a 4 ! ') ;
gametotal = gametotal+4;

%ques t i on 1 : would you ra the r played 3 ,1 or 2 ,2?
e l s e i f (ismember (3 , r4) && ismember (1 , r4))

a4r3 = f i nd (r4==3 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r3)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 3 and a 1 ! ') ;
gametotal = gametotal+4;

55

e l s e i f (sum(ta4r2)>=4)
a4r22 = f i nd (ta4r2 ==1 ,2);
ar (a4r22) = 0 ;
%disp ('Round 4 : Played 2 2 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (2 , r4) && sum(ta4r1)>=2)
a4r2 = f i nd (r4==2 ,1);
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r2)=0;
ar (a4r11)=0;
%disp ('Round 4 : Played a 2 and 2 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r1)>=4)
a4r1111 = f i nd (ta4r1 ==1 ,4);
ar (a4r1111) = 0 ;
%disp ('Round 4 : Played 4 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r4))
a4r3 = f i nd (r4==3 ,1);
ar (a4r3)=0;
%disp ('Round 4 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4) && ismember (1 , r4))
a4r2 = f i nd (r4==2 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r2)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta4r1)==3)
a4r111 = f i nd (ta4r1 ==1 ,3);
ar (a4r111) = 0 ;
%disp ('Round 4 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4))
a4r2 = f i nd (r4==2 ,1);
ar (a4r2)=0;
%disp ('Round 4 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==2)
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r11) = 0 ;
%disp ('Round 4 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==1)
a4r1 = f i nd (ta4r1 ==1 ,1);
ar (a4r1) = 0 ;
%disp ('Round 4 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 4 : Could not play anything : (') ;

end
r5=ar (1 : 8) ;
%round 5
ta5r2 = (r5==2);
ta5r1 = (r5==1);
i f (ismember (5 , r5))

a5r5 = f i nd (r5==5 ,1);
ar (a5r5) = 0 ;
%disp ('Round 5 : Played a 5 ! ') ;
gametotal = gametotal+5;

%ques t i on : which kind o f 5 i s second best ?
e l s e i f (ismember (4 , r5) && ismember (1 , r5))

a5r4 = f i nd (r5==4 ,1);
a5r1 = f i nd (r5==1 ,1);
ar (a5r4)=0;
ar (a5r1)=0;
%disp ('Round 5 : Played a 4 and a 1 ! ') ;
gametotal = gametotal+5;

e l s e i f (ismember (3 , r5) && ismember (2 , r5))
a5r3 = f i nd (r5==3 ,1);
a5r2 = f i nd (r5==2 ,1);
ar (a5r3)=0;

56

ar (a5r2)=0;
%disp ('Round 5 : Played a 3 and a 2 ! ') ;
gametotal = gametotal+5;

e l s e i f (ismember (3 , r5) && sum(ta5r1)>=2)
a5r3 = f i nd (r5==3 ,1);
a5r11 = f i nd (ta5r1 ==1 ,2);
ar (a5r3)=0;
ar (a5r11)=0;
%disp ('Round 5 : Played a 3 and 2 1 ' s ! ') ;
gametotal = gametotal+5;

e l s e i f (sum(ta5r2)>=2 && ismember (1 , r5))
a5r22 = f i nd (ta5r2 ==1 ,2);
a5r1 = f i nd (r5==1 ,1);
ar (a5r2)=0;
ar (a5r1)=0;
%disp ('Round 5 : Played 2 2 ' s and a 1 ! ') ;
gametotal = gametotal+5;

e l s e i f (ismember (2 , r5) && sum(ta5r1)>=3)
a5r2 = f i nd (r5==2 ,1);
a5r111 = f i nd (ta5r1 ==1 ,3);
ar (a5r2)=0;
ar (a5r111)=0;
%disp ('Round 5 : Played a 2 and 3 1 ' s ! ') ;
gametotal = gametotal+5;

e l s e i f (sum(ta5r1)>=5)
a5r11111 = f i nd (ta5r1 ==1 ,5);
ar (a5r11111)=0;
%disp ('Round 5 : Played 5 1 ' s ! ') ;
gametotal = gametotal+5;

e l s e i f (ismember (4 , r5))
a5r4 = f i nd (r5==4 ,1);
ar (a5r4)=0;
%disp ('Round 5 : Played a 4 ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r5) && ismember (1 , r5))
a5r3 = f i nd (r5==3 ,1);
a5r1 = f i nd (r5==1 ,1);
ar (a5r3)=0;
ar (a5r1)=0;
%disp ('Round 5 : Played a 3 and a 1 ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta5r2)>=2)
a5r22 = f i nd (ta5r2 ==1 ,2);
ar (a5r22)=0;
%disp ('Round 5 : Played 2 2 ' s ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta5r1)>=4)
a5r1111 = f i nd (ta5r1 ==1 ,4);
ar (a5r1111)=0;
%disp ('Round 5 : Played 4 1 ' s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (3 , r5))
a5r3 = f i nd (r5==3 ,1);
ar (a5r3)=0;
%disp ('Round 5 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r5) && ismember (1 , r5))
a5r2 = f i nd (r5==2 ,1);
a5r1 = f i nd (r5==1 ,1);
ar (a5r2)=0;
ar (a5r1)=0;
%disp ('Round 5 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta5r1)>=3)
a5r111 = f i nd (ta5r1 ==1 ,3);
ar (a5r111)=0;
%disp ('Round 5 : Played 3 1 ' s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r5))
a5r2 = f i nd (r5==2 ,1);
ar (a5r2)=0;
%disp ('Round 5 : Played a 2 ! ') ;
gametotal = gametotal+2;

57

e l s e i f (sum(ta5r1)>=2)
a5r11 = f i nd (ta5r1 ==1 ,2);
ar (a5r11)=0;
%disp ('Round 5 : Played 2 1 ' s ! ')
gametotal = gametotal+2;

e l s e i f (ismember (1 , r5))
a5r1 = f i nd (r5==1 ,1);
ar (a5r1)=0;
%disp ('Round 5 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 5 : Could not play anything : (') ;

end
tempetota l=gametotal ∗prob ;
e t o t a l=e t o t a l+tempetota l ;

a1=tempa1 ;
a2=tempa2 ;
a3=tempa3 ;
a4=tempa4 ;
a5=tempa5 ;

end
i f e t o ta l >maxetotal

maxetotal=e t o t a l ;
max1=tempa1 ;
max2=tempa2 ;
max3=tempa3 ;
max4=tempa4 ;
max5=tempa5 ;

end
tempetota l =0;
e t o t a l =0;

end
end

end
end

maxetotal
max1
max2
max3
max4
max5

8.4 Code: Player 2, 4 Rounds, Coin

c l e a r ;
c l c ;
c l o s e ;

%c r ea t e matrix
v = [1 2 3 4] ;
v1 = {v , v , v , v , v , v , v , v } ;
v2 = allcomb (v1 { : }) ;

%de c l a r e va lue s
probdenom = (30∗29∗28∗27∗26∗25∗24∗23) ;
c=30;
coinround=0;
maxetotal=0;
e t o t a l =0;
max1=0;
max2=0;
max3=0;
max4=0;

58

maxcoin=0;

%t e s t f o r a l l p o s s i b l e d i s t r i b u t i o n s o f cards
f o r a1=0: c

f o r a2=0:c−a1
f o r a3=0:c−a1−a2

a4=c−a1−a2−a3 ;
%loop through the matrix
f o r i = 1 : s i z e (v2 , 1)

ar = v2 (i , :) ;

%s e t temp va lue s
gametotal = 0 ;
co in=1;
prob = 1/probdenom ;
tempa1=a1 ;
tempa2=a2 ;
tempa3=a3 ;
tempa4=a4 ;
f o r j =1:8

i f ar (j)==1
i f a1==0

prob=0;
e l s e

prob=prob∗a1 ;
a1=a1−1;

end
e l s e i f ar (j)==2

i f a2==0
prob=0;

e l s e
prob=prob∗a2 ;
a2=a2−1;

end
e l s e i f ar (j)==3

i f a3==0
prob=0;

e l s e
prob=prob∗a3 ;
a3=a3−1;

end
e l s e i f ar (j)==4

i f a4==0
prob=0;

e l s e
prob=prob∗a4 ;
a4=a4−1;

end
end

end
r1 = ar (1 : 5) ;
%round 1
ta1r2 = (r1==2);
i f (ismember (1 , r1))

a1r1 = f i nd (r1==1 ,1);
ar (a1r1) = 0 ;
%disp ('Round 1 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e i f (co in==1 && sum(ta1r2)>=2)
a1r2 = f i nd (ta1r2 ==1 ,1);
ar (a1r2)=0;
%disp ('Round 1 : Used the co in and played a 2 ! ') ;
gametotal = gametotal+2;
co in = 0 ;
coinround=1;

e l s e
%disp ('Round 1 : Could not play anything : (')

end
r2 = ar (1 : 6) ;
%round 2
ta2r1 = (r2==1);
ta2r3 = (r2==3);
i f (ismember (2 , r2))

59

a2r2 = f i nd (r2==2 ,1);
ar (a2r2) = 0 ;
%disp ('Round 2 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta2r1)>=2)
a2r11 = f i nd (ta2r1 ==1 ,2);
ar (a2r11) = 0 ;
%disp ('Round 2 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (co in==1 && ((sum(ta2r3)>=2) | | (ismember (3 , r2) && ismember (2 , r2) && ismember (1 , r2))))
a2r3 = f i nd (ta2r3 ==1 ,1);
ar (a2r3) = 0 ;
%disp ('Round 2 : Used the co in and played a 3 ! ') ;
gametotal = gametotal + 3 ;
co in = 0 ;
coinround=2;

e l s e i f (sum(ta2r1)==1)
a2r1 = f i nd (ta2r1 ==1 ,1);
ar (a2r1) = 0 ;
%disp ('Round 2 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 2 : Could not play anything : (')

end
r3 = ar (1 : 7) ;
%round 3
ta3r1 = (r3==1);
ta3r2 = (r3==2);
ta3r4 = (r3==4);
i f (ismember (3 , r3))

a3r3 = f i nd (r3==3 ,1);
ar (a3r3) = 0 ;
%disp ('Round 3 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r3) && ismember (1 , r3))
a3r2 = f i nd (r3==2 ,1);
a3r1 = f i nd (r3==1 ,1);
ar (a3r2)=0;
ar (a3r1)=0;
%disp ('Round 3 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta3r1)>=3)
a3r111 = f i nd (ta3r1 ==1 ,3);
ar (a3r111) = 0 ;
%disp ('Round 3 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (co in==1 && ((sum(ta3r4)>=2) | | (ismember (4 , r3) && (sum(ta3r2)>=2)) | | (sum(ta3r2)>=4)))
i f (ismember (4 , r3))

a3r4 = f i nd (ta3r4 ==1 ,1);
ar (a3r4)=0;
%disp ('Round 3 : Used the co in and played a 4 ! ') ;
gametotal = gametotal+4;
co in = 0 ;
coinround=3;

e l s e
a3r22 = f i nd (ta3r2 ==1 ,2);
ar (a3r22)=0;
%disp ('Round 3 : Used the co in and played 2 2 ' s ! ') ;
gametotal = gametotal+4;
co in = 0 ;
coinround=3;

end
e l s e i f (ismember (2 , r3))

a3r2 = f i nd (r3==2 ,1);
ar (a3r2)=0;
%disp ('Round 3 : Played a 2 ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==2)
a3r11 = f i nd (ta3r1 ==1 ,2);
ar (a3r11) = 0 ;
%disp ('Round 3 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta3r1)==1)

60

a3r1 = f i nd (ta3r1 ==1 ,1);
ar (a3r1) = 0 ;
%disp ('Round 3 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 3 : Could not play anything : (') ;

end
r4 = ar (1 : 8) ;
%r5 = ar (1 : 9) ;
%round 4
ta4r1 = (r4==1);
ta4r2 = (r4==2);
i f (ismember (4 , r4))

a4r4 = f i nd (r4==4 ,1);
ar (a4r4) = 0 ;
%disp ('Round 4 : Played a 4 ! ') ;
gametotal = gametotal+4;

%ques t i on 1 : would you ra the r played 3 ,1 or 2 ,2?
e l s e i f (ismember (3 , r4) && ismember (1 , r4))

a4r3 = f i nd (r4==3 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r3)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 3 and a 1 ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r2)>=4)
a4r22 = f i nd (ta4r2 ==1 ,2);
ar (a4r22) = 0 ;
%disp ('Round 4 : Played 2 2 s ! ') ;
gametotal = gametotal+4;

e l s e i f (ismember (2 , r4) && sum(ta4r1)>=2)
a4r2 = f i nd (r4==2 ,1);
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r2)=0;
ar (a4r11)=0;
%disp ('Round 4 : Played a 2 and 2 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (sum(ta4r1)>=4)
a4r1111 = f i nd (ta4r1 ==1 ,4);
ar (a4r1111) = 0 ;
%disp ('Round 4 : Played 4 1 s ! ') ;
gametotal = gametotal+4;

e l s e i f (co in==1 && (ismember (3 , r4) && ismember (2 , r4)))
a4r3 = f i nd (r4==3 ,1);
a4r2 = f i nd (r4==2 ,1);
ar (a4r3)=0;
ar (a4r2)=0;
%disp ('Round 4 : Used the co in and played a 3 and a 2 ! ') ;
gametotal = gametotal+5;
co in = 0 ;
coinround=4;

e l s e i f (ismember (3 , r4))
a4r3 = f i nd (r4==3 ,1);
ar (a4r3)=0;
%disp ('Round 4 : Played a 3 ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4) && ismember (1 , r4))
a4r2 = f i nd (r4==2 ,1);
a4r1 = f i nd (r4==1 ,1);
ar (a4r2)=0;
ar (a4r1)=0;
%disp ('Round 4 : Played a 2 and a 1 ! ') ;
gametotal = gametotal+3;

e l s e i f (sum(ta4r1)==3)
a4r111 = f i nd (ta4r1 ==1 ,3);
ar (a4r111) = 0 ;
%disp ('Round 4 : Played 3 1 s ! ') ;
gametotal = gametotal+3;

e l s e i f (ismember (2 , r4))
a4r2 = f i nd (r4==2 ,1);
ar (a4r2)=0;
%disp ('Round 4 : Played a 2 ! ') ;
gametotal = gametotal+2;

61

e l s e i f (sum(ta4r1)==2)
a4r11 = f i nd (ta4r1 ==1 ,2);
ar (a4r11) = 0 ;
%disp ('Round 4 : Played 2 1 s ! ') ;
gametotal = gametotal+2;

e l s e i f (sum(ta4r1)==1)
a4r1 = f i nd (ta4r1 ==1 ,1);
ar (a4r1) = 0 ;
%disp ('Round 4 : Played a 1 ! ') ;
gametotal = gametotal+1;

e l s e
%disp ('Round 4 : Could not play anything : (') ;

end
i f co in==1

gametotal = gametotal+1;
co in =0;
coinround=5;

end
tempetota l=gametotal ∗prob ;
e t o t a l=e t o t a l+tempetota l ;

a1=tempa1 ;
a2=tempa2 ;
a3=tempa3 ;
a4=tempa4 ;
end
i f e t o ta l >maxetotal

maxetotal=e t o t a l ;
max1=tempa1 ;
max2=tempa2 ;
max3=tempa3 ;
max4=tempa4 ;
maxcoin=coinround ;

end
tempetota l =0;
e t o t a l =0;

end
end

end

maxetotal
max1
max2
max3
max4
maxcoin

8.5 Code: Optimization of Average Game Total for Player 1

The following MATLAB code optimizes the distribution of 1, 2, 3, and 4-cost cards

in the deck. This code was written during the �rst semester of work on the project, and

thus includes hand calculated probabilities talked about at length in Sections 2 and 3 of

this paper. Reliance on probabilities creates robust code, but becomes incredibly ine�cient

anywhere past 4 rounds of play. Hence, the other code included in this project is much

di�erent than that included here.

pc1=4;
pc2=pc1+1;
c=30;
a1max=0;
a2max=0;
a3max=0;

62

a4max=0;
e=0;
f o r a1=0: c

f o r a2=0:c−a1
f o r a3=0:c−a1−a2

a4=c−a1−a2−a3 ;
%round 1
%i n i t i a l choose statement va r i ab l e f o r round 1
a2a3a4c4=0;
%i f statement f o r a2+a3+a4 choose f o r round 1
i f (a2+a3+a4)<4

a2a3a4c4=0;
e l s e

a2a3a4c4=nchoosek (a2+a3+a4 , 4) ;
end
p10=a2a3a4c4/nchoosek (c , 4) ;
p11=1−p10 ;
e1=0∗p10+1∗p11 ; %expected value f o r round 1
%round 2
%i n i t i a l choose statement v a r i a b l e s f o r round 2
a3a4c5=0;
a3a4c4=0;
a3a4c3=0;
a1c2=0;
a1c1=0;
%i f statements f o r a3+a4 chooses f o r round 2
i f (a3+a4)==4

a3a4c5=0;
a3a4c4=1;
a3a4c3=nchoosek (a3+a4 , 3) ;

e l s e i f (a3+a4)==3
a3a4c5=0;
a3a4c4=0;
a3a4c3=1;

e l s e i f (a3+a4)<3
a3a4c5=0;
a3a4c4=0;
a3a4c3=0;

e l s e
a3a4c5=nchoosek (a3+a4 , 5) ;
a3a4c4=nchoosek (a3+a4 , 4) ;
a3a4c3=nchoosek (a3+a4 , 3) ;

end
%i f statements f o r a1 chooses f o r round 2
i f a1==1

a1c2=0;
a1c1=1;

e l s e i f a1==0
a1c2=0;
a1c1=0;

e l s e
a1c2=nchoosek (a1 , 2) ;
a1c1=nchoosek (a1 , 1) ;

end
p20=(a3a4c5+(4/5)∗ a3a4c4∗a1c1)/ nchoosek (c , 5) ;
p21=(a3a4c3∗a1c2+(1/5)∗ a3a4c4∗a1c1)/ nchoosek (c , 5) ;
p22=1−p20−p21 ;
e2=0∗p20+1∗p21+2∗p22 ; %expected value f o r round 2
%round 3
%i n i t i a l choose statement v a r i a b l e s f o r round 3
a4c6=0;
a4c5=0;
a4c4=0;
a4c3=0;
a4c2=0;
a4c1=0;
a2c6=0;
a2c5=0;
a2c4=0;
a2c3=0;
a2c2=0;
a2c1=0;
a1c4=0;

63

a1c3=0;
a1c2=0;
a1c1=0;
%i f statements f o r a4 chooses f o r round 3
i f a4==5

a4c6=0;
a4c5=1;
a4c4=nchoosek (a4 , 4) ;
a4c3=nchoosek (a4 , 3) ;
a4c2=nchoosek (a4 , 2) ;
a4c1=nchoosek (a4 , 1) ;

e l s e i f a4==4
a4c6=0;
a4c5=0;
a4c4=1;
a4c3=nchoosek (a4 , 3) ;
a4c2=nchoosek (a4 , 2) ;
a4c1=nchoosek (a4 , 1) ;

e l s e i f a4==3
a4c6=0;
a4c5=0;
a4c4=0;
a4c3=1;
a4c2=nchoosek (a4 , 2) ;
a4c1=nchoosek (a4 , 1) ;

e l s e i f a4==2
a4c6=0;
a4c5=0;
a4c4=0;
a4c3=0;
a4c2=1;
a4c1=nchoosek (a4 , 1) ;

e l s e i f a4==1
a4c6=0;
a4c5=0;
a4c4=0;
a4c3=0;
a4c2=0;
a4c1=1;

e l s e i f a4==0
a4c6=0;
a4c5=0;
a4c4=0;
a4c3=0;
a4c2=0;
a4c1=0;

e l s e
a4c6=nchoosek (a4 , 6) ;
a4c5=nchoosek (a4 , 5) ;
a4c4=nchoosek (a4 , 4) ;
a4c3=nchoosek (a4 , 3) ;
a4c2=nchoosek (a4 , 2) ;
a4c1=nchoosek (a4 , 1) ;

end
%i f statements f o r a2 chooses f o r round 3
i f a2==5

a2c6=0;
a2c5=1;
a2c4=nchoosek (a2 , 4) ;
a2c3=nchoosek (a2 , 3) ;
a2c2=nchoosek (a2 , 2) ;
a2c1=nchoosek (a2 , 1) ;

e l s e i f a2==4
a2c6=0;
a2c5=0;
a2c4=1;
a2c3=nchoosek (a2 , 3) ;
a2c2=nchoosek (a2 , 2) ;
a2c1=nchoosek (a2 , 1) ;

e l s e i f a2==3
a2c6=0;
a2c5=0;
a2c4=0;

64

a2c3=1;
a2c2=nchoosek (a2 , 2) ;
a2c1=nchoosek (a2 , 1) ;

e l s e i f a2==2
a2c6=0;
a2c5=0;
a2c4=0;
a2c3=0;
a2c2=1;
a2c1=nchoosek (a2 , 1) ;

e l s e i f a2==1
a2c6=0;
a2c5=0;
a2c4=0;
a2c3=0;
a2c2=0;
a2c1=1;

e l s e i f a2==0
a2c6=0;
a2c5=0;
a2c4=0;
a2c3=0;
a2c2=0;
a2c1=0;

e l s e
a2c6=nchoosek (a2 , 6) ;
a2c5=nchoosek (a2 , 5) ;
a2c4=nchoosek (a2 , 4) ;
a2c3=nchoosek (a2 , 3) ;
a2c2=nchoosek (a2 , 2) ;
a2c1=nchoosek (a2 , 1) ;

end
%i f statements f o r a1 chooses f o r round 3
i f a1==3

a1c4=0;
a1c3=1;
a1c2=nchoosek (a1 , 2) ;
a1c1=nchoosek (a1 , 1) ;

e l s e i f a1==2
a1c4=0;
a1c3=0;
a1c2=1;
a1c1=nchoosek (a1 , 1) ;

e l s e i f a1==1
a1c4=0;
a1c3=0;
a1c2=0;
a1c1=1;

e l s e i f a1==0
a1c4=0;
a1c3=0;
a1c2=0;
a1c1=0;

e l s e
a1c4=nchoosek (a1 , 4) ;
a1c3=nchoosek (a1 , 3) ;
a1c2=nchoosek (a1 , 2) ;
a1c1=nchoosek (a1 , 1) ;

end
p30=(a4c6+(5/6)∗ a4c5∗a1c1+(4/6)∗ a4c4∗a1c2+(3/6)∗ a4c3∗a1c3+(5/6)∗ a4c5∗a2c1 +(4/5)∗(4/6)∗ a4c4∗a1c1∗a2c1)/ nchoosek (3 0 , 6) ;
p31=((1/6)∗ a4c5∗a1c1+(2/6)∗ a4c4∗a1c2+(3/6)∗ a4c3∗a1c3+a4c2∗a1c4+(1/6)∗ a4c4∗a2c1∗a1c1+(23/30)∗ a4c3∗a1c2∗a2c1)/ nchoosek (3 0 , 6) ;
p32=((1/6)∗ a4c5∗a2c1+(1/6)∗ a4c4∗a1c1∗a2c1+(1/6)∗ a4c3∗a1c2∗a2c1+a4c2∗a1c3∗a2c1+(4/6)∗ a4c3∗a1c1∗a2c2+(4/6)∗ a4c2∗a1c1∗a2c3+(4/6)∗ a4c1∗a1c1∗a2c4+(4/6)∗ a4c5∗a1c1+a4c4∗a2c2+a4c3∗a2c3+a4c2∗a2c4+a4c1∗a2c5+a2c6)/ nchoosek (3 0 , 6) ;
p33=1−p30−p31−p32 ;
e3=0∗p30+1∗p31+2∗p32+3∗p33 ; %expected value f o r round 3
%round 4
%i n i t i a l choose statement v a r i a b l e s f o r round 4
a3c7=0;
a3c6=0;
a3c5=0;
a3c4=0;
a3c1=0;
%a2c2=0; a l r eady de f ined
%a2c1=0; a l r eady de f ined

65

a1c7=0;
a1c6=0;
a1c5=0;
%a1c3=0; a l r eady de f ined
%a1c1=0; a l r eady de f ined
%i f statements f o r a3 chooses f o r round 4
i f a3==6

a3c7=0;
a3c6=1;
a3c5=nchoosek (a3 , 5) ;
a3c4=nchoosek (a3 , 4) ;
a3c1=nchoosek (a3 , 1) ;

e l s e i f a3==5
a3c7=0;
a3c6=0;
a3c5=1;
a3c4=nchoosek (a3 , 4) ;
a3c1=nchoosek (a3 , 1) ;

e l s e i f a3==4
a3c7=0;
a3c6=0;
a3c5=0;
a3c4=1;
a3c1=nchoosek (a3 , 1) ;

e l s e i f a3==3 | | a3==2 | | a3==1
a3c7=0;
a3c6=0;
a3c5=0;
a3c4=0;
a3c1=nchoosek (a3 , 1) ;

e l s e i f a3==0
a3c7=0;
a3c6=0;
a3c5=0;
a3c4=0;
a3c1=0;

e l s e
a3c7=nchoosek (a3 , 7) ;
a3c6=nchoosek (a3 , 6) ;
a3c5=nchoosek (a3 , 5) ;
a3c4=nchoosek (a3 , 4) ;
a3c1=nchoosek (a3 , 1) ;

end
%i f statements f o r a1 chooses f o r round 4
i f a1==6

a1c7=0;
a1c6=1;
a1c5=nchoosek (a1 , 4) ;

e l s e i f a1==5
a1c7=0;
a1c6=0;
a1c5=1;

e l s e i f a1<5
a1c7=0;
a1c6=0;
a1c5=0;

e l s e
a1c7=nchoosek (a1 , 7) ;
a1c6=nchoosek (a1 , 6) ;
a1c5=nchoosek (a1 , 5) ;

end
p40=0;
p41=a1c7/nchoosek (3 0 , 7) ;
p42=(a1c6∗a2c1)/ nchoosek (3 0 , 7) ;
p43=(a1c6∗a3c1+a1c5∗a2c2+a3c7+(5/7)∗ a1c1∗a3c6+(4/7)∗ a1c1∗a2c2∗a3c5+(1/21)∗ a2c2∗a3c5+(8/21)∗ a1c1∗a2c2∗a3c4+(2/7)∗ a1c3∗a3c4)/ nchoosek (3 0 , 7) ;
p44=1−p40−p41−p42−p43 ;
e4=0∗p40+1∗p41+2∗p42+3∗p43+4∗p44 ; %expected value f o r round 4
etemp=e1+e2+e3+e4 ;
i f etemp>e

e=etemp ;
a1max=a1 ;
a2max=a2 ;
a3max=a3 ;

66

a4max=a4 ;
end

end
end

end
e
a1max
a2max
a3max
a4max

8.6 Code Runtimes

67

References

[1] Blizzard Entertainment. https://playhearthstone.com/en-us/game-guide/

[2] Gamepedia. https://hearthstone.gamepedia.com/Mana_curve

[3] Gamepedia. https://hearthstone.gamepedia.com/Meta

[4] John E. Freund. John E. Freund's Mathematical Statistics, Sixth Edition.

Chapters 1, 2, 3, and 4

[5] Jos van der Geest. https://www.mathworks.com/matlabcentral/�leexchange/10064-allcomb-varargin-

[6] Wizards of the Coast. https://magic.wizards.com/en/gameplay/how-to-play

68

