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ABSTRACT 
 

NUMERICAL ANALYSIS OF THE DISCRETE FOURIER TRANSFORM 
 

By 

HOPE WYMER 

May 2004  
 
 

Advisors:  Dr. Erich Friedman and Dr. George Glander 
Department:  Mathematics and Computer Science 
 
The Fourier transform is a mathematical function that breaks a given physical wave function 

down into its frequency components. A new method is being researched in which the Fourier 

transform is used on electron diffraction data, in order to determine a crystal’s atomic surface 

structure. In an effort to see how much data error is magnified by the Fourier transform, we can 

look at the various norms of the Fourier matrix. We find that the 2-norm of the Fourier transform 

is N1/2, where N is the number of data points. This is calculated using geometric series and 

Lagrange multipliers. An alternative method uses the characteristic polynomial, eigenvalues, and 

the spectral radius to get the same solution. Thus, the most the error can be stretched according to 

the 2-norm is N1/2. The ∞- and 1-norms turn out to have the same maximum stretch of N. 

Meanwhile, there is experimental evidence to believe that the 3-norm is 3
2

N , and that these 

results can be generalized for the p-norm to pN
1

1!

, when 3!p  . 
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CHAPTER 1 
PHYSICS BACKGROUND 

 
 Fourier transforms enable researchers to analyze periodic waves for a wide variety of 

applications, with the calculations performed by computers. A Fourier transform breaks a given 

wave function down into its various frequency components. In this particular project, Fourier 

transforms are useful for a new method of finding a crystal’s surface structure.  

 A crystal’s surface structure consists of the top three to five atomic layers. It is a major 

factor in how the crystal reacts with other substances, which is why knowledge of this structure is 

important for all sorts of things, including the manufacture of computer chips, dealing with 

corrosion, and working with catalysts. The current method of determining the surface structure 

depends on the use of electron diffraction data. An electron gun shoots electrons of a particular 

energy level at the sample. When electrons strike surface atoms in the crystal, inelastic collisions 

cause spherical electron waves to emanate. Parts of these waves travel deeper into the sample 

before being diffracted back outward by other atoms, while the remaining portion travel 

immediately outward. These two types of waves then interact with each other, and the 

interference pattern shows up on a surrounding phosphor screen. Below is an example of such an 

image: 

 

Figure 1: Electron Diffraction Pattern 
Si(111) 7x7; Normal Incidence, 132 eV 
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The accepted method for determining the surface structure uses a supercomputer with the electron 

diffraction data. This is unfortunate for smaller research laboratories, since access to a 

supercomputer is often too expensive. 

 There is a close similarity between holography and electron diffraction. A hologram is a 

real, 3-dimensional image of some object that is formed through a diffraction interference pattern. 

A beam splitter directs part of a laser beam directly toward a piece of film (reference beam), 

while the rest is directed at a subject (object beam), which then diffracts the beam to the film. The 

interference of the two beams is recorded on the film, from which the hologram is produced. 

 

Figure 2: Making of a Hologram 
 
 
 
 
 Since scientists can currently use Fourier transforms on holographic interference patterns 

to obtain holograms, the concept behind the newer technique is to use Fourier transforms on 

electron diffraction interference patterns. The result is a real, 3-dimensional image of the crystal’s 

surface structure at a much lower price, since the calculations can be done with just a fast PC. 

 From here we will focus on the Fourier transform itself. In Chapter 2 we will briefly look 

at the use of a discrete Fourier transform in place of a standard Fourier transform for actual 

calculations. We will also examine the Fourier transform as a matrix operation. With this 
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approach in mind, over the course of the coming chapters we will figure out the various norms of 

the Fourier matrix, in order to see how it magnifies data errors. (In the future, we will need this to 

examine how much any error in the electron diffraction data is amplified through this technique.) 

With Chapter 3 we discuss how to calculate the norms of vectors and matrices. We then 

immediately start on the 2-norm, for which two methods are explored. The first one uses the sum 

of a geometric series and Lagrange multipliers to find the 2-norm, and the second method 

requires eigenvalues and the spectral radius. In Chapters 4 and 5, we then take advantage of what 

is already known about finding the ∞-norm and 1-norm, respectively, to show that they both have 

the same result for the Fourier transform matrix. Finally, for the 3-norm in Chapter 6, we revert to 

the first method used with the 2-norm, which we then generalize to the p-norm for Chapter 7. 

Chapter 8 summarizes the results and discusses further areas for research. 
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CHAPTER 2 
THE FOURIER TRANSFORM 

 

2.1 STANDARD FOURIER TRANSFORM 

The following equations give the general form of the standard and inverse Fourier 

transforms, in terms of time t and frequency f: 

!
"

"#

#
= dtetgfG fti $2)()(

 (standard Fourier transform) 

  !
"

"#
= dfefGtg fti $2)()(

 (inverse Fourier transform). 

The standard Fourier transform converts a function of time g(t) to a function of frequency G(f), 

where the frequencies represent those found in g(t). The inverse Fourier transform reverses this 

process, and it should be pointed out that the signs in the exponentials in the two equations are 

opposite of each other. 

 

2.2 DISCRETE FOURIER TRANSFORM 

 When the values of g(t) or G(f) are only known experimentally, the above equations must 

be altered to allow for numerical integration on finite bounds. This changes their forms to: 

!
=

" #=
max

0

2)()(
t

t

fti tetgfG $

 (discrete Fourier transform) 

!
=

"=
max

0

2)()(
f

f

fti fefGtg #

 (discrete inverse Fourier transform) 

In the case of electron diffraction, we use the spatial variable R
r

 instead of time t, and spatial 

frequency k replaces frequency f. Spatial frequency is also known as the wave number, and it is 

calculated based upon the energy of the electrons shot at the sample: 
4.150

2
E

k != , with 
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energy E measured in electron-volts (eV) and wave number k measured in angstroms-1 (Å-1). Our 

data are in terms of the wave number, while what we want (i.e. the locations of surface atoms) is 

in terms of the spatial variable R
r

; for this reason, we use the discrete inverse Fourier transform: 

  !
=

"=
max

0

2)()(
k

k

kRi kekGRg #
r

. 

 The function G(k) is actually based on an intensity profile. Intensity profiles are created 

by sampling the brightness intensities from different electron diffraction patterns at the same 

location in every pattern. The intensity profile of a given spot represents the type of interference 

that occurs from a particular angle from the crystal, at a variety of energy levels. 

 

 

2.3 CHANGE OF BOUNDS FOR ELECTRON DIFFRACTION DATA 

 Another alteration that must be made for this experiment is a result of equipment 

limitations. The machinery has a specific range of energies at which it can shoot the electrons, but 

it does not start at E = 0 eV (k = 0 Å-1) as the transform requires. As a result, our equation 

requires the summation bounds to be as follows: 

  !
=

"=
max

min

2)()(
k

kk

kRi kekGRg #
r

 

A simple substitution fixes this problem, however. If we let k’ = k – kmin, the equation becomes:  

 
')'()(

minmax

min

0'

)'(2

min!
"

=

+ #+=

kk

k

Rkki
kekkGRg

$
r

. 

(Of course, Δk’ = Δk.) 

 

2.4 THE FOURIER TRANSFORM AS MATRIX MULTIPLICATION 

 From a linear algebra perspective, a Fourier transform can be performed through matrix 

multiplication. For example, say we wish to take the Fourier transform of four time-space data 

points g(0), g(1), g(2), g(3). If we have N = 4 data points, then the fundamental frequency of the 
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function g(t) is given by 
4

11

0
==

N
f . The other frequencies are integral multiples n of this 

fundamental frequency: 

  
4

3
,,

4

2
,
4

1
,
4

01
,,

2
,

1
,

0
KK !

"
!

N

N

NNNN

n
. 

By letting N

i

eW

!2
"

= , the formula for the Fourier transform becomes 

  !
"

=

#=$
%

&
'
(

) 1

0

)(
N

t

nt
tWtg

N

n
G . 

This variable W is a primitive Nth root of unity, since WN = 1. It is also known as a rotation 

operator because raising W to successive powers causes the unit vector to rotate about the origin 

in the complex plane by an additional 
N

!2
 radians. (In our example of N = 4: 1

0
=W , iW =

1 , 

1
2

!=W ,  iW !=
3 , and ∆t = 1. ) Because we are doing a summation over the integers 

1,,1,0 != Nt K , ∆t will always equal 1. For our four values in time-space, then, we have 

  [ ]30201000 )3()2()1()0(
0 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G , 

  [ ]31211101 )3()2()1()0(
1 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G , 

  [ ]32221202 )3()2()1()0(
2 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G , and 

  [ ]33231303 )3()2()1()0(
3 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G .  

This is the same as 

  

!
!
!
!
!
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$
$
$
$
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!
!

"
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$
$
$
$
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%

&
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where the nth row of the resulting matrix represents !
"

#
$
%

&

N

n
G . We can generalize this for other 

values of N by: 

  ( )

( ) ( ) !
!
!
!
!
!

"

#
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$
$
$
$
$
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&

!!
!
!
!
!
!

"
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"

#
$
%

&

'
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2
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   !
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CHAPTER 3 
2-NORM OF THE DISCRETE FOURIER TRANSFORM MATRIX 

 
3.1 MATRIX NORMS 

 When using experimental data, we are often interested in how a computation magnifies 

any error that exists within the data. Finding no preexisting information on this for the Fourier 

transform among the literature, it becomes necessary for us to derive it ourselves. If we assume 

our data vector has some amount of error within it, then we can represent this vector as the sum of 

the measured data vector and a vector of error terms: 

  

!
!
!
!
!
!

"
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Thus, since matrix multiplication is distributive, multiplying the first vector by its Fourier matrix 

is the same as: 

  ( )
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. 

 
 How much could the second part change the final answer? To find out, we need 

information about the “sizes” of our vectors and matrices, in order to compare them. One way to 

measure the size of a vector is its Euclidean length, often called the 2-norm.  However, the length 
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can be measured in other ways. Given the vector g = ( )t
n
ggg

110
,,, !K  – where t means 

transpose – its p-norm and ∞–norm are: 

 p

N

i

p

ip
gg !

"

=

=
1

0

 (p-norm of a vector g) [2, p 274] 

 i

Ni

gg max
10 !""

#
=  (∞-norm of a vector g) [1, p 419] 

For the NxN matrix F, the p-norm formula is the same as the ∞–norm formula and is given by: 

 
p

g
p

FgF

p

max
1=

=  (p-norm of a discrete Fourier matrix F) [2, p 280] 

 

3.2 THE 2-NORM OF THE DISCRETE FOURIER TRANSFORM, METHOD 1 

3.2.1 SETTING UP THE PROBLEM 

 Let us now calculate the 2-norm of the Fourier matrix. To find its two-norm, we need to 

know the greatest amount it can stretch a unit vector. So, we are trying to maximize 

( )( )
2

10 ),,( t

nt

n gWggx =!K , subject to ( ) 1),,(
210 ==! tn

gggy K . 

Maximizing ( )( )
2

2
10 ),,( t

nt

n gWggx =!K , subject to ( ) 1),,(
2

210 ==! tn
gggy K , 

accomplishes the same goal more easily, however. Since the Fourier transform of vector g is 

given by !
"

#
$
%

&
= '

(

=

1

0

N

t

t

nt
gWFg , then we need to maximize 

2
1

0

1

0

10 ),,( ! !
"

=

"

=

" #
$

%
&
'

(
=
N

n

N

t

t

nt

n gWggx K . 

 

3.2.2 SIMPLIFYING USING A GEOMETRIC SERIES 

Theorem 3.2.2: !
"

#
$
%

&
+=!

"

#
$
%

&
= '' '

(

=

(

(

=

(

=

(

1

1

2

0

2
1

0

1

0

10 ),,(
N

k

kNk

N

n

N

t

t

nt

n gggNgWggx K  
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Proof:  The equation 
2

1

0

1

0

10 ),,( ! !
"

=

"

=

" #
$

%
&
'

(
=
N

n

N

t

t

nt

n gWggx K  simplifies quite a bit due to the 

summation of Wnt. Squaring and collecting like terms allows us to simplify the above expression 

such that each term in the final sum takes the form ( )
ji

N

k

kji ggW !
"

#
$
%

&
'
(

=

+
1

0

, where i, j = 0, 1, …, N-1. 

A number of these terms equal zero and drop out for the following reasons. Recall that 

the sum of a finite geometric series is given by: 

  
( )

r

rc
crcrcrc

N

N

!

!
=++++ !

1

112
K , 

provided that r ≠ 1. We have two cases to examine: 

1) CASE I: If c = W0 = 1 and r = W(i+j) ≠ 1, then our finite sum is given by 

( ) ( )
)(

)(
)(1-N)(2

1

1
1

ji

jiN
jijiji

W

W
WWW

+

+
+++

!

!
=++++ L . 

 But by the very nature of a rotation operator, (WN) (i+j)  = (W0) (i+j)  = 1(i+j)  = 1.  

This gives us 

   0
1

11

1

1
)()(

)(

=
!

!
=

!

!
++

+

jiji

jiN

WW

W
. 

2) CASE II: If c = W0 = 1 and r = W(i+j) = 1, then the summation simplifies to 

( )
N=++++ 1-N210

1111 K . 

Thus, the only cross terms that remain in the sum are those where (i+j) is a multiple of N. 

However, i and j can each range from 0 to N-1, so their sum ranges from 0 to 2(N-1). But this 

means that (i+j) can only be 0 or N. And when i = j, we get one such term: 2
1

0

2

i

N

k

ik gW !
"

#
$
%

&
'
(

=

, where 

i = 0 and (if N is even) N/2; when i ≠ j, there are two such cross terms. For example, when N = 4: 

  )2(4),,( 31

2

2

2

030 ggggggx ++=K . 

To generalize: 
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  !
"

#
$
%

&
+= '

(

=

((

1

1

2

010 ),,(
N

k

kNkn gggNggx K . ◊◊◊ 

 

3.2.3 MAXIMIZING USING LAGRANGE MULTIPLIERS 

 With the sleeker form of the Fourier transform, we are now able to determine how much 

the error is magnified, with the help of Lagrange multipliers. Lagrange multipliers can be used to 

find the relative extrema of a function x that is subject to a constraint y. 

Theorem 3.2.3: The 2-norm of the NxN Fourier transform matrix is NF =
2

. 

Proof:  By the previous theorem, we are maximizing 

   ( ) !
"

#
$
%

&
+= '

(

=

((

1

1

2

01,,0

N

i

iNiN gggNggx
K

, 

    subject to ( ) 1,,
1

0

2

10
==!

"

=

"

N

i

iN gggy K . 

To use this technique, we need to set the respective partial derivatives of x equal to λ times the 

corresponding partials of y, where λ is a constant known as the Lagrange multiplier. This will 

give us N equations involving λ, with our constraint as an additional, final equation. We then 

solve the set of equations, if possible. 

 Our set of equations looks like: 

  )2(2 0000
gNgyx gg !! ="=   (1) 

  )2(2 iiNgg gNgyx
ii

!! ="= #   (2) 

  )2(2 iNigg gNgyx
iNiN !="=

!!
##   (3) 

  ( ) 1,,
1

0

2

10
==!

"

=

"

N

i

iN gggx K    (4) 

 
There are a number of cases here, although it is fairly straightforward to show which gives the 

maximum. According to (1), either λ = N or g0 = 0. 

CASE 1: (λ = N) 
Substituting λ = N into (2) and (3) gives us: 
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  )2(2 iiNgg gNNgNyx
ii

=!= "  

  )2(2 iNigg gNNgNyx
iNiN !="=

!!
. 

 
These each simplify to the result that iNi gg != . Our objective equation then becomes:  

  ( ) !
"

#
$
%

&
=!

"

#
$
%

&
+= ''

(

=

(

=

(

1

0

2
1

1

22

01,,0

N

i

i

N

i

iN gNggNggx
K

. 

But recall that (4) tells us that 

  1

1

0

2

=!
"

=

N

i

ig ; 

this indicates that our function simply equals N: 

  ( ) [ ] NNgNggx
N

i

iN ==!
"

#
$
%

&
= '

(

=

( 1
1

0

2

1,,0K
. 

 
CASE 2: (g0 = 0, gi = 0) 

If we assume g0 = 0, then we can solve (2) and (3) for gi and gN-i. 
  (2, multiplied by λ) iNi Ngg != "" 2)2(2  

  (3, multiplied by -N) )2(2 2

iNi gNgN !!=! "  

     ( ) 02
22 =! Ngi "  

This equation provides us with three possibilities: gi = 0, λ = N, or λ = -N. When we take 
g0 = 0 and gi = 0 as our second case, the constraint equation (4) is impossible: 

  ( ) 10,,
1

0

2

10
!=="

#

=

#

N

i

iN gggy K . 

Thus, we can eliminate this case. 
 

CASE 3: (g0 = 0, λ = N) 
This case is similar to the first one. It tells us from (2) and (3) that 
  iNi gg != , 
and (4) simplifies to 

  ( ) 1,,
1

1

2

10
==!

"

=

"

N

i

iN gggy K . 

The function value must then be: 

  ( ) [ ] NNgNggx
N

i

iN ==!
"

#
$
%

&
= '

(

=

( 1
1

1

2

1,,0K
. 

 
CASE 4: (g0 = 0, λ = -N) 
Our final case is a little different. Here, (2) and (3) become: 

 )2(2 iiNgg gNNgNyx
ii

!="= !  

  )2(2 iNigg gNNgNyx
iNiN !!="=

!!
. 

So in this case, 
  iNi gg !!= , 
and substituting this into the functions x and y gives us: 
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( ) !
"
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$
%

&
'= (

'

=

'
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1

2

1,,0

N

i

iN gNggx
K

 

( ) 1,,
1

1

2

10
==!

"

=

"

N

i

iN gggy K . 

Using the results of function y in function x yields: 

  ( ) [ ] NNgNggx
N

i

iN !=!="
#

$
%
&

'
!= (

!

=

! 1
1

1

2

1,,0K
. 

 
To summarize these four cases, the extrema values of our function x are N and –N. It is obvious 

which of the two must be the maximum that we are seeking. Remember, though, that the true 

function we are maximizing is the square root of x, not x itself. This means that the most our error 

vector can be magnified by is actually N .  ◊◊◊ 

 

3.3 THE 2-NORM OF THE DISCRETE FOURIER TRANSFORM, METHOD 2 

3.3.1 ANOTHER WAY TO FIND THE 2-NORM OF A MATRIX 

 We can also find the 2-norm of a matrix using its characteristic polynomial p to find any 

eigenvalues λ. The characteristic polynomial of the NxN matrix M is given by 

( ) ( )IMp !! "= det , where I is the NxN identity matrix 

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

100

010

001

L

MOMM

L

L

I . 

When p(λ) is set equal to zero, we can solve for λ. We can then use λ to find the spectral radius 

ρ(M) of the matrix, which is simply !" max)( =M . The 2-norm of the matrix M is given by 

[ ]2
1

2
)( MMM

t!= , where Mt is the transpose of M. [2, p 281] 
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3.3.2 Background Calculations 

 Our Fourier matrix F is symmetric, so FtF = F2. Recall that ( )ntWF = , where 

1-N 1,..., 0, tn, = . Then we find that ( )( ) ( )
!!
"

#
$$
%

&

'

'
===

+

+

tn

Ntn

ntnt

W

WW
WWF

1

1 )(0
2 , where n is the 

row and t is the column. Just as in section 3.2.2, we end up with terms that equal zero when 

01 !"
+tn

W , and they equal N when 1=
+tn

W . We get terms of N, then, whenever 

Nn or  01 =+ . There will always be an entry of N at 0== tn , and when N is even we have a 

term of N at 
2

N
tn == . So, for example, 

 N = 4 (even): 

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

000

000

000

000

2

N

N

N

N

F , and 

 N = 3 (odd): 
!
!
!

"

#

$
$
$

%

&

=

00

00

00

2

N

N

N

F . 

 Recall that we must first solve for the eigenvalues λ in order to find the spectral radius ρ. 

To do this we need to get the characteristic polynomial p for F2, and then set it equal to zero 

 ( ) ( ) 0det =!= IFFp
t "" . 

Because this involves subtracting λ along the diagonal, we get different results depending upon 

whether N is even or odd. Let us examine these two cases. 

CASE 1: When N is even, we have: 

  ( ) ( )IFFp
t !! "= det  

            ( )IF !"= 2
det  
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            ( )

!

!

!

!

"

"

"

"=

LL

MOMMM

LL

MMMOM

LL

0

00

0

 

N

N

N

N  

            ( )

!

!

!

!

"

"

"

"=

L

MOMM

L

L

0

00

0

2

N

N

N  

CASE 2: When N is odd, though, we have: 

  ( ) ( )IFFp
t !! "= det  

            ( )IF !"= 2
det  

             

!

!

!

!

!

"

"

"

"

"

=

000

000

000

000

0000

L

L

MMOMMM

L

L

L

N

N

N

N

N

 

             ( )

!

!

!

!

!

"

"

"

"

"=

00

00

00

00

 

L

L

MMOMM

L

L

N

N

N

N

N  
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 Our characteristic polynomial simplifies in both even and odd cases to include the 

determinant 

   

!

!

!

!

"

"

"

"

00

00

00

00

L

L

MMOMM

L

L

N

N

N

N

. 

By making this a triangular matrix, the determinant is simply the product of the diagonal entries. 

Through Gauss-Jordan elimination, we can get rid of the Ns in the upper half of the matrix, which 

gives us 

   

!

!

!
!

!
!

"

"

"

"

00

00

000

000

2

2

L

L

MMOMM

L

L

N

N

N

N

. 

We will use this result in our proof of the 2-norm. 

 

3.3.3  FINDING THE 2-NORM 

Theorem 3.3.3: The 2-norm of the NxN discrete Fourier transform matrix F is given by 

   NF =
2

 

Proof:  If we take advantage of the calculations in 3.3.2, then we have two cases in 

finding the eigenvalues that we use to solve for the 2-norm: 

 When N is even, 

  ( ) 0det)( 2 =!= IFp ""  

          0])()[()( 2
=!+!=

qq
NNN """ , where 

2

2!
=
N

q . 
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 When N is odd, 

  ( ) 0det)( 2 =!= IFp ""  

          0])())[(( =!+!=
qq

NNN """ , where 
2

1!
=
N

q . 

Clearly, in either case, the eigenvalues are –N and N. This makes the spectral radius:

 NF == !" max)( 2 . 

We can now solve for the 2-norm of our Fourier matrix F: 

  [ ] 2
1

2
 )( FFF

t!=  

           [ ] 2
1

2  )(F!=  

           N=  ◊◊◊ 

This is exactly the solution we had with our first method 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 
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∞ -NORM OF THE DISCRETE FOURIER TRANSFORM 
 

4.1 GENERAL SHORTCUT FOR THE ∞ -NORM 

Theorem 4.1: [1, p 426] If the matrix A = (aij) is an nxn matrix, then  !
=""

#
=

n

j

ij

ni

aA
11

max .  

Proof:  There are two stages to this proof, and we begin by examining the less-than-or-

equal-to argument. By the definition of the ∞-norm, ( )
i

ni

AxA max
1 !!

"
= . But since 

( ) !
=

=
n

j

jiji xaAx
1

, then 
i

n

j

jij

ni

xaA !
=""

#
=

11

max . If instead of multiplying aij by the 

corresponding xj, we always multiply by the largest entry of x, then 

 [ ]j
nj

n

j

ij

nii

n

j

jij

ni

xaxaA maxmaxmax
11111 !!=!!=!!

" ## != .  

We can now take advantage of our constraint on x: 1max
1

==
!!

" i

ni

xx . Thus, 

!
=""

#
"

n

j

ij

ni

aA
11

max . 

 For the greater-than-or-equal to case, we must set up two assumptions. The first is that 

we let p be an integer such that !!
=""=

=
n

j

ij

ni

n

j

pj
aa

111

max . Our second assumption is that our 

vector x is given by 
!
"
#

$

+
=

,1

,1
j
x  

if

if
 

0

0

!

"

pj

pj

a

a
. This still gives us 1max

1

==
!!

" i

ni

xx , which 

makes sure that pjjpj
axa = , for all j = 1, 2,…, n. 

 By the definition of the matrix ∞-norm, we start off with !
=""

#
=

n

j

jij

ni

xaA
11

max . Since 

this is just the largest “row-sum,” it must be greater than or equal to the row-sum of some row p. 

Thus, 
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 !!!
===""

#
=$=

n

j

jpj

n

j

jpj

n

j

jij

ni

xaxaxaA
1111

max . 

Due to our initial assumptions of p, we get  

 !!
=""=

#
=$

n

j

ij

ni

n

j

jpj axaA
111

max . 

 Thus, !
=""

#
=

n

j

ij

ni

aA
11

max . ◊◊◊ 

 

4.2 CALCULATION OF THE ∞ -NORM FOR THE DFT 

Theorem 4.2:  The ∞-norm of the NxN Fourier transform matrix is NF =
!

. 

Proof:  Recall that our Fourier transform matrix looks like this:    

 ( )

( ) ( ) !!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

=!
"

#
$
%

&

'''

'

'

2
11210

12420

1210

0000

NNN

N

N

WWWW

WWWW

WWWW

WWWW

N

n
F

L

MOMMM

K

L

L

. 

Then our ∞–norm is given by 

 

!
!
!

"

!!
!

#

$

++++

++++

++++

++++

==

%%%

%

%

%&&

%

=%&&
' (

2)1()1(2)1(0

)1(2420

1(210

0000

11

1

111

)

maxmax

NNN

N

N

Ni

N

j

ij

Ni

WWWW

WWWW

WWWW

WWWW

fF

L

M

L

L

L

. 

We immediately recognize that we can simplify this with our previous results (from 3.2.2). These 

tell us that between the nature of the sum of a finite geometric series and that of the rotation 

operator W, the top equation simplifies to N, and each of the others simplify to 0. Then our ∞-

norm for the DFT must then just be N. ◊◊◊ 
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CHAPTER 5 
1-NORM OF THE DISCRETE FOURIER TRANSFORM 

 

5.1 GENERAL SHORTCUT FOR THE 1-NORM 

 It turns out that the 1-norm of a matrix has a similar feel to the ∞-norm, in that it can be 

given by the largest column sum of the matrix: 
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Theorem 5.1: [2, p. 283] !
=""#

==
n

i

ij

njx

aAxA
11

1

1

1 maxmax
1

, where !
=

=
n

i

i
xx

1

11
. 

Proof:  We already have stated that !!
"

=

"

=

=
1

0

1

0

1

N

i

N

j

jij xaAx . The scalar triangle inequality 

then tells us that j

N

i

N

j

ij

N

i

N

j

jij xaxaAx !!!!
"

=

"

=

"

=

"

=

#=
1

0

1

0

1

0

1

0

1
. Expanded, this looks like: 

 ( )1)1(0101000

1

0

1

0
1

 !!

!

=

!

=

+++"# $$ NNj

N

i

N

j

ij xaxaxaxaAx L  

                                                 ( )1)1(1111010 !!++++
NN
xaxaxa L  

                                                  M  

                                                 ( )1)1)(1(11)1(00)1( !!!!! ++++
NNNNN
xaxaxa L . 

If we collect some like terms, we can rewrite this as: 

 ( )0)1(100001
 !+++"

N
aaaxAx L  

                       ( )1)1(11011  !++++
N

aaax L  

                        M  

                        ( ))1)(1()1(1)1(01  !!!!! ++++
NNNNN

aaax L . 

 ! !
"

=

"

=

#
$

%
&
'

(
)

1

0

1

0

1

N

j

N

i

ijj axAx . 

Now, instead of multiplying each j
x  by its corresponding j-column summation, we could 

instead multiply by the largest column summation each time. Naturally, we would expect this 

value to be greater than or equal to our current solution. This gives us: 

 !
"

#
$
%

&
!
!
"

#
$
$
%

&
'!

"

#
$
%

&
' ((( (

)

=
)''

)

=

)

=

)

=

1

0
1

1

0

1

0

1

0

1
max

N

i

ij
Njz

N

j

j

N

j

N

i

ijj axaxAx . 
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Remember, though, that 1

1

0

=!
!
"

#
$
$
%

&
'
(

=

N

j

jx , so we really have !
"

=
"##

#
1

0
1

1
max

N

i

ij
Njz

aAx . 

 In order to make this an equality, though, we need to look at the problem from another 

angle. Let 
!
"
#

=
entriesother  allfor  ,0

entry     k for the ,1 th

k
e     be the kth unit vector. If we say that our vector 

k
ex =  

and that A*k is the column with the largest sum, then 1
1
=x  and  

!
"

=
"##

===
1

0
101*11

max

N

i

ij
Nj

kk aAAeAx . ◊◊◊ 

 

5.2 CALCULATION OF THE 1-NORM FOR THE DFT 

 Of course, when we put this shortcut to use, the 1-norm of the DFT is simple. 

Theorem 5.2: The 1-norm of the NxN discrete Fourier transform matrix is 

   NF =
1

. 

Proof:  Since the Fourier transform matrix is symmetric, the largest column sum is 

exactly the same as the ∞-norm’s largest row sum, which we know from the ∞–norm to simply 

be N: NF =
1

. ◊◊◊ 

 

 
 
 
 

CHAPTER 6 
3-NORM OF THE DISCRETE FOURIER TRANSFORM 

  

 The setup for the 3-norm is similar to that of the 2-norm. We have an Nx1 vector x, for 

which we have a corresponding NxN Fourier matrix F.: 
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This means that we need to maximize 

 [ ++++++++= !

!

!

3

1

1

1

1

0

0
3

1

0

1

0

0

0

3 N

N

N
xWxWxWxWxWxWFx LL  

  
3
1

3

1

)1)(1(

1

1

0

0

!"
#++++ $

$$$
N

NNN
xWxWxW LL , 

subject to 1
3
=x . Mathematica® is unable to solve the Lagrange multiplier’s equations. 

However, we can work around this by calculating the 3-norm for a large number of random unit 

vectors, with various values of N, and keep track of which unit vector gives the maximum for 

each N. The data from just such a test can be found in Appendix A, while Appendix B contains 

the code for the Java® program that was used in these calculations. The experimental evidence 

from these trials suggests that there is reason to believe the following: 

Conjecture 6.0: The 3-norm of the Nx1 vector 
3

Fx  is maximized subject to the Nx1 

vector 1
3
=x  when

3
110

1

N

xxx
N

==== !L . 

 If this conjecture is true, then we can solve for the 3-norm from there. 

Theorem 6.0: Assume that the 3-norm of the Nx1 vector 
3

Fx  is maximized subject to the Nx1 

vector 1
3
=x  when

3
110

1

N

xxx
N

==== !L . Then the 3-norm for the NxN discrete Fourier 

transform matrix is 

   3
2

3
NF =  

 

Proof:   If we substitute the xi values into the equation we were to maximize, we get 
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If we then factor all of the !!
"

#
$$
%

&
3

1

N

 terms, we have 
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3
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WWW LL . 

From our previous results in section 3.2.2, we know that all of the absolute value terms drop out 

except for the first one, which leaves us with 

( ) ( ) 3
2

3

3

3
1

000

33

11
NN
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#
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CHAPTER 7 
P-NORM OF THE DISCRETE FOURIER TRANSFORM 

 

 We can generalize the results of the 3-norm to that of the p-norm, where 3!p . We still 

have an Nx1 vector x, for which we have a corresponding NxN Fourier matrix F.: 
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Then we need to maximize 
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LL , 

subject to 1=
p

x . The Java® program in Appendix B can also be used for higher values of p, 

and the data suggests that our Conjecture 6.0 can also be generalized for 3!p : 

Conjecture 7.0: Let there be an integer p, where 3!p  . The p-norm of the Nx1 vector 

p
Fx  is maximized subject to the Nx1 vector 1=

p
x  when

pN
N

xxx
1

110
==== !L . 

 If this conjecture is true, then we can solve for the p-norm. 

Theorem 7.0: Assume that the p-norm of the Nx1 vector 
p

Fx  is maximized subject to the 

Nx1 vector 1=
p

x  when
pN
N

xxx
1

110
==== !L , where 3!p . Then the p-norm for the 

NxN discrete Fourier transform matrix is 

   pNF
p

1
1!

=  

 

Proof:   If we substitute the xi values into the equation we were to maximize, we get 
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If we then factor all of the !!
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1
 terms, we have 



 31 

 [ ++++++++!!
"

#
$$
%

&
= ' p

N
p

pp
WWWWWW

N
Fx

1100001
LL    

  
pp

NNN
WWW

1

)1)(1(10

!"
#++++

$$$
LL . 

From our previous results in section 3.2.2, all of the absolute value terms drop out except for the 

first one, and we are left with 
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CHAPTER 8 
FUTURE WORK  

 

 So far, our research has proven the following: 

Theorem 3.2.2: !
"

#
$
%

&
+=!

"

#
$
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&
= '' '

(

=

(

(

=

(

=

(

1

1
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0
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1

0

1

0

10 ),,(
N
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kNk

N

n

N

t

t

nt

n gggNgWggx K  

Theorem 3.2.3/3.3.3: The 2-norm of the NxN Fourier transform matrix is NF =
2

 

Theorem 4.2:  The ∞-norm of the NxN Fourier transform matrix is NF =
!

. 
Theorem 5.2: The 1-norm of the NxN discrete Fourier transform matrix is 
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   NF =
1

. 

Theorem 6.0: Assume that the 3-norm of the Nx1 vector 
3

Fx  is maximized subject to the Nx1 

vector 1
3
=x  when

3
110

1

N

xxx
N

==== !L . Then the 3-norm for the NxN discrete Fourier 

transform matrix is 

   3
2

3
NF =  

Theorem 7.0: Assume that the p-norm of the Nx1 vector 
p

Fx  is maximized subject to the 

Nx1 vector 1=
p

x  when
pN
N

xxx
1

110
==== !L , where 3!p . Then the p-norm for the 

NxN discrete Fourier transform matrix is 

   pNF
p

1
1!

=  

 

 We can summarize the various norms for the DFT as: 

p 1 2 3 3!p  ∞ 

norm NF =
1

 NF =
2

 3
2

3
NF =  pNF

p

1
1!

=  NF =
!

 

 

 However, the 3-norm and generalized p-norm are based on Conjecture 6.0 and 

Conjecture 7.0, respectively. In the future, we will try again to prove that our norms for 3!p  

occur when 
pN
N

xxx
1

110
==== !L . It is possible that there is some simplification based 

upon the nature of the Fourier transform which we have not yet taken into account. 

 We also still need to calculate the Fourier transform based on Dr. Glander’s experimental 

data for electron diffraction. In doing so, we could compare the data with its expected values, to 

see how much error there is going into the DFT.  We could then check how much the error is 

actually magnified on average, compared to the worst-case scenario that the p-norm provides. It 

is possible that this would explain, in part, why even newer methods for finding a crystal’s 

surface structure are giving results more like those obtained through the traditional method. 



 33 

 Finally, it is of interest that Conjecture 7.0 does not support p = 1 or p = 2, and Theorem 

7.0 turns out to support p = 2 but not p = 1, even though it makes no claims of doing so. We had 

already figured out these results using other means, so it was not a problem. However, it would be 

worth taking the time to figure out why this happens.
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 APPENDIX A 

 (This following data are the output from the Java® program that supports Conjecture 6.0 

and Conjecture 7.0. The program itself can be found in Appendix B. The norms for p = 2, 3, 4 are 

shown here, with calculations done for N = 2, 3, 4. The printouts show how many trials were 

performed for each combination of N and p, the largest norm that was achieved from those trials, 

and the entries of the unit vector that provide this maximum. 

 For reference, just above each set of data is the expected norm and unit vector entry, 

according to the Conjectures and their resulting Theorem 6.0 and Theorem 7.0. It should be noted 

that Conjecture 7.0 does not support p = 2, so it is of no consequence that its “expected” unit 

vector values do not match the experimental values. Recall that any unit vector for p = 2 provides 

the norm, which does match the expected norm value.) 

 
p = 2: 
 
(expected norm: 1.414213562 #0.707106781) 
N = 2, p = 2.0, number of trials = 1000000, maxNorm = 1.4142135623730956 
x0: 0.5571649819397294 
x1: 0.8304018201449834 

 
(expected norm: 1.732050808 #0.577350269) 
N = 3, p = 2.0, number of trials = 1000000, maxNorm = 1.7320508075688656 
x0: 0.5769219272285501 
x1: 0.5496867100296532 
x2: 0.6041569421099718 

 
(expected norm: 2 #0.5) 
N = 4, p = 2.0, number of trials = 1000000, maxNorm = 1.9999999999999998 
x0: 0.05774506011610977 
x1: 0.19890402295883308 
x2: 0.057745065280469327 
x3: 0.9766105698377082 

 
 
p = 3: 
 
(expected norm: 1.587401052; expected unit vector values: 0.793700526) 
N = 2, p = 3.0, number of trials = 1000000, maxNorm = 1.5874010519681705 
x0: 0.7937004152177145 
x1: 0.793700636750456 

 
(expected norm: 2.080083823; expected unit vector values: 0.693361274) 
N = 3, p = 3.0, number of trials = 1000000, maxNorm = 2.080083675654963 
x0: 0.6931452974234525 
x1: 0.6935961972124336 
x2: 0.6933421810170675 
 
 
 

 



 35 

(expected norm: 2.5198421; expected unit vector values: 0.629960525) 
N = 4, p = 3.0, number of trials = 1000000, maxNorm = 2.519838515272478 
x0: 0.6305531481286869 
x1: 0.6291912703321297 
x2: 0.6292406054610216 
x3: 0.6308534904449358 

 
 
p = 4: 
 
(expected norm: 1.681792831; expected unit vector values: 0.840896415) 
N = 2, p = 4.0, number of trials = 1000000, maxNorm = 1.6817928305074292 
x0: 0.8408964106308133 
x1: 0.8408964198766158 
 
(expected norm: 2.279507057; expected unit vector values: 0.759835686) 
N = 3, p = 4.0, number of trials = 1000000, maxNorm = 2.2795063985776904 
x0: 0.7601348967627876 
x1: 0.7600012492642936 
x2: 0.7593702525505998 

 
(expected norm: 2.828427125; expected unit vector values: 0.707106781) 
N = 4, p = 4.0, number of trials = 1000000, maxNorm = 2.8283493068906322 
x0: 0.711150018768841 
x1: 0.7028763737203395 
x2: 0.7082664787000142 
x3: 0.7060564355606014 
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APPENDIX B 

//Figures out the maximum value based on our unity constraint, 
//for the p-norm of the DFT 
//April 15, 2004; Math Sen Res, Stetson University 
//Hope Wymer 
 
import java.util.Random; 
import java.lang.Math; 
class ConjectureProof 
{ 
   public static void main(String[] args)  
   { 
      Random rand = new Random(); 
       
      int N, numTrials; 
      double p, vectorNorm, matrixNorm, maxNorm; 
             
      N = 2; 
      p = 2; 
      numTrials = 10000000; 
      maxNorm = 0; 
       
      double[] randomVector = new double[N]; 
      double[] unitVector = new double[N]; 
      double[] maxXVector = new double[N]; 
      double[] sum2 = {0,0}; 
       
      //runs the process "numTrials" times 
      for (int k=0; k<numTrials; k++) 
      { 
         //fills the vector with random integers 
         for (int i=0; i<N; i++) 
         { 
            randomVector[i] = Math.abs(rand.nextInt()); 
         }  
       
         double sum1 = 0;         
       
         //finds the p-norm of the random vector 
         for (int i=0; i<N; i++) 
         { 
            sum1 = sum1 + Math.pow(randomVector[i], p); 
         } 
         vectorNorm = Math.pow(sum1, (1/p)); 
       
         //forces our random vector to be a unit vector 
         for(int i=0; i<N; i++) 
         { 
            unitVector[i] = randomVector[i]/vectorNorm; 
         } 
       
         double[][][] fourierMatrix = new double[N][N][2]; 
          
         //N=2 Fourier matrix 
         if (N==2) 
         { 
            double[][][] fourierMatrix2 = {  {  {1,0},{ 1,0}   }, 
                                             {  {1,0},{-1,0}   }  }; 
            fourierMatrix = fourierMatrix2; 
         } 
       
         //N=3 Fourier matrix 
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         if (N==3) 
         { 
            double root3 = Math.sqrt(3); 
          
            double[][][] fourierMatrix2 
               = {  {  {1,0},{   1,       0},{   1,       0}  }, 
                    {  {1,0},{-0.5, root3/2},{-0.5,-root3/2}  }, 
                    {  {1,0},{-0.5,-root3/2},{-0.5, root3/2}  }  }; 
            fourierMatrix = fourierMatrix2; 
         }  
             
         //N=4 Fourier matrix 
         if (N==4) 
         { 
            double[][][] fourierMatrix2 
               = {  {  {1,0},{ 1, 0},{ 1,0},{ 1, 0}  }, 
                    {  {1,0},{ 0, 1},{-1,0},{ 0,-1}  }, 
                    {  {1,0},{-1, 0},{ 1,0},{-1, 0}  }, 
                    {  {1,0},{ 0,-1},{-1,0},{ 0, 1}  }  }; 
            fourierMatrix = fourierMatrix2;                        
         } 
       
         double[][] fourierVector = new double[N][2]; 
       
         //Fourier matrix times random unit vector 
         //changes row 
         for (int i=0; i < N; i++) 
         { 
            //changes column 
            for (int j=0; j < N; j++) 
            { 
               fourierVector[i][0] = fourierVector[i][0] 
                                     + fourierMatrix[i][j][0] * unitVector[j]; 
               fourierVector[i][1] = fourierVector[i][1] 
                                     + fourierMatrix[i][j][1] * unitVector[j]; 
            }         
         } 
       
         double[][] fourierVectorPth; 
         //raises the fourierVector entries to the p-th, keeps a running sum. 
         //in the ith row 
         for (int i=0; i<N; i++) 
         { 
            double real, imag; 
          
            real = fourierVector[i][0]; 
            imag = fourierVector[i][1]; 
          
            //does the multiplication (p-1) times 
            for (int j=1; j<p; j++) 
            { 
               double realTemp = real; 
               double imagTemp = imag; 
             
               real = realTemp*fourierVector[i][0] 
                      - imagTemp*fourierVector[i][1]; 
               imag = realTemp*fourierVector[i][1] 
                      + imagTemp*fourierVector[i][0]; 
            } 
          
            fourierVector[i][0] = Math.abs(real); 
            fourierVector[i][1] = Math.abs(imag); 
         } 



 38 

       
         //sums the powered entries of fourierVector[][]        
         sum2[0] = 0; 
         sum2[1] = 0; 
       
         for (int i=0; i<N; i++) 
         { 
            sum2[0] = sum2[0] + fourierVector[i][0]; 
            sum2[1] = sum2[1] + fourierVector[i][1]; 
         } 
             
             
         //compares the p-norm, raised to the pth power 
         double sumNormSquared; 
         sumNormSquared = Math.pow(Math.sqrt(sum2[0]*sum2[0] 
                                             + sum2[1]*sum2[1]),(1/p)); 
         if (sumNormSquared > maxNorm) 
         { 
            maxNorm = sumNormSquared; 
            for (int i=0; i<N; i++) 
            { 
               maxXVector[i] = unitVector[i]; 
            } 
         }   
      } 
       
      System.out.println("N = "+N+", p = "+p+", number of trials = " 
                                     +numTrials+", maxNorm = "+maxNorm); 
      for (int i=0; i<N; i++) 
      { 
         System.out.println("x"+i+ ": " + maxXVector[i]); 
      } 
       
   }  //method main 
} 
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