
NUMERICAL ANALYSIS OF THE DISCRETE FOURIER TRANSFORM

By

HOPE WYMER

A SENIOR RESEARCH PAPER PRESENTED TO THE DEPARTMENT OF MATHEMATICS
AND COMPUTER SCIENCE OF STETSON UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE

STETSON UNIVERSITY

2004

 2

ACKNOWLEDGMENTS

I would like to express my gratitude to the professors of both the Math/CS and Physics
departments at Stetson University for helping me with an interesting project that involves both of
my majors. Special thanks go to Dr. George Glander for inviting me to be involved in his
research, and to Dr. Erich Friedman for his unending guidance and patience on the math side of
things.

I would also like to note that a Stetson Undergraduate Research Experience grant enabled
me to begin work on my project a summer early.

 3

TABLE OF CONTENTS
ACKNOWLEDGEMENTS --

LIST OF FIGURES ---

ABSTRACT --

CHAPTERS

1. PHYSICS BACKGROUND---

2. THE FOURIER TRANSFORM ---

2.1. Standard Fourier Transform --
2.2. Discrete Fourier Transform --
2.3. Change of Bounds for Electron Diffraction Data ---
2.4. The Fourier Transform as Matrix Multiplication --

3. 2-NORM OF THE DISCRETE FOURIER TRANSFORM MATRIX ----------------------

3.1. Matrix Norms --
3.2. The 2-Norm of the Discrete Fourier Transform, Method 1 ------------------------------

3.2.1. Setting Up the Problem ---
3.2.2. Simplifying Using a Geometric Series --
3.2.3. Maximizing Using Lagrange Multipliers ---

3.3. The 2-Norm of the Discrete Fourier Transform, Method 2 ------------------------------
3.3.1. Another Way to Find the 2-Norm of a Matrix -----------------------------------
3.3.2. Background Calculations-- ---
3.3.3. Finding the 2-Norm---------- --

4. ∞–NORM OF THE DISCRETE FOURIER TRANSFORM----------------------------------

4.1. General Shortcut for the ∞-Norm--
4.2. Calculation of the ∞-Norm for the DFT--

5. 1-NORM OF THE DISCRETE FOURIER TRANSFORM------------------------------------

5.1. General Shortcut for the 1-Norm—--
5.2. Calculation of the 1-Norm for the DFT---

6. 3-NORM OF THE DISCRETE FOURIER TRANSFORM------------------------------------

7. P-NORM OF THE DISCRETE FOURIER TRANSFORM-----------------------------------

8. FUTURE WORK---

APPENDIX A---

APPENDIX B---

REFERENCES ---

2

4

5

6

9
9
9

10
10

13
13
14
14
14
16
18
18
19
21

23
23
24

26
26
27

28

30

32

34

36

39

 4

 LIST OF FIGURES

FIGURE

1. Electron Diffraction Pattern --
2. Making of a Hologram --

6
7

 5

ABSTRACT

NUMERICAL ANALYSIS OF THE DISCRETE FOURIER TRANSFORM

By

HOPE WYMER

May 2004

Advisors: Dr. Erich Friedman and Dr. George Glander
Department: Mathematics and Computer Science

The Fourier transform is a mathematical function that breaks a given physical wave function

down into its frequency components. A new method is being researched in which the Fourier

transform is used on electron diffraction data, in order to determine a crystal’s atomic surface

structure. In an effort to see how much data error is magnified by the Fourier transform, we can

look at the various norms of the Fourier matrix. We find that the 2-norm of the Fourier transform

is N1/2, where N is the number of data points. This is calculated using geometric series and

Lagrange multipliers. An alternative method uses the characteristic polynomial, eigenvalues, and

the spectral radius to get the same solution. Thus, the most the error can be stretched according to

the 2-norm is N1/2. The ∞- and 1-norms turn out to have the same maximum stretch of N.

Meanwhile, there is experimental evidence to believe that the 3-norm is 3
2

N , and that these

results can be generalized for the p-norm to pN
1

1!

, when 3!p .

 6

CHAPTER 1
PHYSICS BACKGROUND

 Fourier transforms enable researchers to analyze periodic waves for a wide variety of

applications, with the calculations performed by computers. A Fourier transform breaks a given

wave function down into its various frequency components. In this particular project, Fourier

transforms are useful for a new method of finding a crystal’s surface structure.

 A crystal’s surface structure consists of the top three to five atomic layers. It is a major

factor in how the crystal reacts with other substances, which is why knowledge of this structure is

important for all sorts of things, including the manufacture of computer chips, dealing with

corrosion, and working with catalysts. The current method of determining the surface structure

depends on the use of electron diffraction data. An electron gun shoots electrons of a particular

energy level at the sample. When electrons strike surface atoms in the crystal, inelastic collisions

cause spherical electron waves to emanate. Parts of these waves travel deeper into the sample

before being diffracted back outward by other atoms, while the remaining portion travel

immediately outward. These two types of waves then interact with each other, and the

interference pattern shows up on a surrounding phosphor screen. Below is an example of such an

image:

Figure 1: Electron Diffraction Pattern
Si(111) 7x7; Normal Incidence, 132 eV

 7

The accepted method for determining the surface structure uses a supercomputer with the electron

diffraction data. This is unfortunate for smaller research laboratories, since access to a

supercomputer is often too expensive.

 There is a close similarity between holography and electron diffraction. A hologram is a

real, 3-dimensional image of some object that is formed through a diffraction interference pattern.

A beam splitter directs part of a laser beam directly toward a piece of film (reference beam),

while the rest is directed at a subject (object beam), which then diffracts the beam to the film. The

interference of the two beams is recorded on the film, from which the hologram is produced.

Figure 2: Making of a Hologram

 Since scientists can currently use Fourier transforms on holographic interference patterns

to obtain holograms, the concept behind the newer technique is to use Fourier transforms on

electron diffraction interference patterns. The result is a real, 3-dimensional image of the crystal’s

surface structure at a much lower price, since the calculations can be done with just a fast PC.

 From here we will focus on the Fourier transform itself. In Chapter 2 we will briefly look

at the use of a discrete Fourier transform in place of a standard Fourier transform for actual

calculations. We will also examine the Fourier transform as a matrix operation. With this

 8

approach in mind, over the course of the coming chapters we will figure out the various norms of

the Fourier matrix, in order to see how it magnifies data errors. (In the future, we will need this to

examine how much any error in the electron diffraction data is amplified through this technique.)

With Chapter 3 we discuss how to calculate the norms of vectors and matrices. We then

immediately start on the 2-norm, for which two methods are explored. The first one uses the sum

of a geometric series and Lagrange multipliers to find the 2-norm, and the second method

requires eigenvalues and the spectral radius. In Chapters 4 and 5, we then take advantage of what

is already known about finding the ∞-norm and 1-norm, respectively, to show that they both have

the same result for the Fourier transform matrix. Finally, for the 3-norm in Chapter 6, we revert to

the first method used with the 2-norm, which we then generalize to the p-norm for Chapter 7.

Chapter 8 summarizes the results and discusses further areas for research.

 9

CHAPTER 2
THE FOURIER TRANSFORM

2.1 STANDARD FOURIER TRANSFORM

The following equations give the general form of the standard and inverse Fourier

transforms, in terms of time t and frequency f:

!
"

"#

#
= dtetgfG fti $2)()(

 (standard Fourier transform)

 !
"

"#
= dfefGtg fti $2)()(

 (inverse Fourier transform).

The standard Fourier transform converts a function of time g(t) to a function of frequency G(f),

where the frequencies represent those found in g(t). The inverse Fourier transform reverses this

process, and it should be pointed out that the signs in the exponentials in the two equations are

opposite of each other.

2.2 DISCRETE FOURIER TRANSFORM

 When the values of g(t) or G(f) are only known experimentally, the above equations must

be altered to allow for numerical integration on finite bounds. This changes their forms to:

!
=

" #=
max

0

2)()(
t

t

fti tetgfG $

 (discrete Fourier transform)

!
=

"=
max

0

2)()(
f

f

fti fefGtg #

 (discrete inverse Fourier transform)

In the case of electron diffraction, we use the spatial variable R
r

 instead of time t, and spatial

frequency k replaces frequency f. Spatial frequency is also known as the wave number, and it is

calculated based upon the energy of the electrons shot at the sample:
4.150

2
E

k != , with

 10

energy E measured in electron-volts (eV) and wave number k measured in angstroms-1 (Å-1). Our

data are in terms of the wave number, while what we want (i.e. the locations of surface atoms) is

in terms of the spatial variable R
r

; for this reason, we use the discrete inverse Fourier transform:

 !
=

"=
max

0

2)()(
k

k

kRi kekGRg #
r

.

 The function G(k) is actually based on an intensity profile. Intensity profiles are created

by sampling the brightness intensities from different electron diffraction patterns at the same

location in every pattern. The intensity profile of a given spot represents the type of interference

that occurs from a particular angle from the crystal, at a variety of energy levels.

2.3 CHANGE OF BOUNDS FOR ELECTRON DIFFRACTION DATA

 Another alteration that must be made for this experiment is a result of equipment

limitations. The machinery has a specific range of energies at which it can shoot the electrons, but

it does not start at E = 0 eV (k = 0 Å-1) as the transform requires. As a result, our equation

requires the summation bounds to be as follows:

 !
=

"=
max

min

2)()(
k

kk

kRi kekGRg #
r

A simple substitution fixes this problem, however. If we let k’ = k – kmin, the equation becomes:

')'()(

minmax

min

0'

)'(2

min!
"

=

+ #+=

kk

k

Rkki
kekkGRg

$
r

.

(Of course, Δk’ = Δk.)

2.4 THE FOURIER TRANSFORM AS MATRIX MULTIPLICATION

 From a linear algebra perspective, a Fourier transform can be performed through matrix

multiplication. For example, say we wish to take the Fourier transform of four time-space data

points g(0), g(1), g(2), g(3). If we have N = 4 data points, then the fundamental frequency of the

 11

function g(t) is given by
4

11

0
==

N
f . The other frequencies are integral multiples n of this

fundamental frequency:

4

3
,,

4

2
,
4

1
,
4

01
,,

2
,

1
,

0
KK !

"
!

N

N

NNNN

n
.

By letting N

i

eW

!2
"

= , the formula for the Fourier transform becomes

 !
"

=

#=$
%

&
'
(

) 1

0

)(
N

t

nt
tWtg

N

n
G .

This variable W is a primitive Nth root of unity, since WN = 1. It is also known as a rotation

operator because raising W to successive powers causes the unit vector to rotate about the origin

in the complex plane by an additional
N

!2
 radians. (In our example of N = 4: 1

0
=W , iW =

1 ,

1
2

!=W , iW !=
3 , and ∆t = 1.) Because we are doing a summation over the integers

1,,1,0 != Nt K , ∆t will always equal 1. For our four values in time-space, then, we have

 []30201000)3()2()1()0(
0 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G ,

 []31211101)3()2()1()0(
1 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G ,

 []32221202)3()2()1()0(
2 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G , and

 []33231303)3()2()1()0(
3 !!!! +++="
#

$
%
&

'
WgWgWgWg

N
G .

This is the same as

!
!
!
!
!

"

#

$
$
$
$
$

%

&

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=!
"

#
$
%

&

)3(

)2(

)1(

)0(

9630

6420

3210

0000

g

g

g

g

WWWW

WWWW

WWWW

WWWW

N

n
G ,

 12

where the nth row of the resulting matrix represents !
"

#
$
%

&

N

n
G . We can generalize this for other

values of N by:

 ()

() () !
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

!!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

=!
"

#
$
%

&

'
'''

'

'

1

2

1

0

11210

12420

1210

0000

2

N
NNN

N

N

g

g

g

g

WWWW

WWWW

WWWW

WWWW

N

n
G

M

L

MOMMM

K

L

L

 !
"

#
$
%

&
= '

(

=

1

0

N

t

t

nt
gW

 13

CHAPTER 3
2-NORM OF THE DISCRETE FOURIER TRANSFORM MATRIX

3.1 MATRIX NORMS

 When using experimental data, we are often interested in how a computation magnifies

any error that exists within the data. Finding no preexisting information on this for the Fourier

transform among the literature, it becomes necessary for us to derive it ourselves. If we assume

our data vector has some amount of error within it, then we can represent this vector as the sum of

the measured data vector and a vector of error terms:

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

'

'

'

+

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'+

'+

'+

'+

((((1

2

1

0

1

2

1

0

11

22

11

00

NNNN g

g

g

g

g

g

g

g

gg

gg

gg

gg

MMM

Thus, since matrix multiplication is distributive, multiplying the first vector by its Fourier matrix

is the same as:

 ()

() () !
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

!!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

'
'''

'

'

1

2

1

0

11210

0

12420

1210

0000

2

N
NNN

N

N

g

g

g

g

WWWW

W

WWWW

WWWW

WWWW

M

L

MOMM

K

L

L

 ()

() () !
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

'

'

'

!!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

+

(
(((

(

(

1

2

1

0

11210

0

12420

1210

0000

2

N
NNN

N

N

g

g

g

g

WWWW

W

WWWW

WWWW

WWWW

M

L

MOMM

K

L

L

.

 How much could the second part change the final answer? To find out, we need

information about the “sizes” of our vectors and matrices, in order to compare them. One way to

measure the size of a vector is its Euclidean length, often called the 2-norm. However, the length

 14

can be measured in other ways. Given the vector g = ()t
n
ggg

110
,,, !K – where t means

transpose – its p-norm and ∞–norm are:

 p

N

i

p

ip
gg !

"

=

=
1

0

 (p-norm of a vector g) [2, p 274]

 i

Ni

gg max
10 !""

#
= (∞-norm of a vector g) [1, p 419]

For the NxN matrix F, the p-norm formula is the same as the ∞–norm formula and is given by:

p

g
p

FgF

p

max
1=

= (p-norm of a discrete Fourier matrix F) [2, p 280]

3.2 THE 2-NORM OF THE DISCRETE FOURIER TRANSFORM, METHOD 1

3.2.1 SETTING UP THE PROBLEM

 Let us now calculate the 2-norm of the Fourier matrix. To find its two-norm, we need to

know the greatest amount it can stretch a unit vector. So, we are trying to maximize

()()
2

10),,(t

nt

n gWggx =!K , subject to () 1),,(
210 ==! tn

gggy K .

Maximizing ()()
2

2
10),,(t

nt

n gWggx =!K , subject to () 1),,(
2

210 ==! tn
gggy K ,

accomplishes the same goal more easily, however. Since the Fourier transform of vector g is

given by !
"

#
$
%

&
= '

(

=

1

0

N

t

t

nt
gWFg , then we need to maximize

2
1

0

1

0

10),,(! !
"

=

"

=

" #
$

%
&
'

(
=
N

n

N

t

t

nt

n gWggx K .

3.2.2 SIMPLIFYING USING A GEOMETRIC SERIES

Theorem 3.2.2: !
"

#
$
%

&
+=!

"

#
$
%

&
= '' '

(

=

(

(

=

(

=

(

1

1

2

0

2
1

0

1

0

10),,(
N

k

kNk

N

n

N

t

t

nt

n gggNgWggx K

 15

Proof: The equation
2

1

0

1

0

10),,(! !
"

=

"

=

" #
$

%
&
'

(
=
N

n

N

t

t

nt

n gWggx K simplifies quite a bit due to the

summation of Wnt. Squaring and collecting like terms allows us to simplify the above expression

such that each term in the final sum takes the form ()
ji

N

k

kji ggW !
"

#
$
%

&
'
(

=

+
1

0

, where i, j = 0, 1, …, N-1.

A number of these terms equal zero and drop out for the following reasons. Recall that

the sum of a finite geometric series is given by:

()

r

rc
crcrcrc

N

N

!

!
=++++ !

1

112
K ,

provided that r ≠ 1. We have two cases to examine:

1) CASE I: If c = W0 = 1 and r = W(i+j) ≠ 1, then our finite sum is given by

() ()
)(

)(
)(1-N)(2

1

1
1

ji

jiN
jijiji

W

W
WWW

+

+
+++

!

!
=++++ L .

 But by the very nature of a rotation operator, (WN) (i+j) = (W0) (i+j) = 1(i+j) = 1.

This gives us

 0
1

11

1

1
)()(

)(

=
!

!
=

!

!
++

+

jiji

jiN

WW

W
.

2) CASE II: If c = W0 = 1 and r = W(i+j) = 1, then the summation simplifies to

()
N=++++ 1-N210

1111 K .

Thus, the only cross terms that remain in the sum are those where (i+j) is a multiple of N.

However, i and j can each range from 0 to N-1, so their sum ranges from 0 to 2(N-1). But this

means that (i+j) can only be 0 or N. And when i = j, we get one such term: 2
1

0

2

i

N

k

ik gW !
"

#
$
%

&
'
(

=

, where

i = 0 and (if N is even) N/2; when i ≠ j, there are two such cross terms. For example, when N = 4:

)2(4),,(31

2

2

2

030 ggggggx ++=K .

To generalize:

 16

 !
"

#
$
%

&
+= '

(

=

((

1

1

2

010),,(
N

k

kNkn gggNggx K . ◊◊◊

3.2.3 MAXIMIZING USING LAGRANGE MULTIPLIERS

 With the sleeker form of the Fourier transform, we are now able to determine how much

the error is magnified, with the help of Lagrange multipliers. Lagrange multipliers can be used to

find the relative extrema of a function x that is subject to a constraint y.

Theorem 3.2.3: The 2-norm of the NxN Fourier transform matrix is NF =
2

.

Proof: By the previous theorem, we are maximizing

 () !
"

#
$
%

&
+= '

(

=

((

1

1

2

01,,0

N

i

iNiN gggNggx
K

,

 subject to () 1,,
1

0

2

10
==!

"

=

"

N

i

iN gggy K .

To use this technique, we need to set the respective partial derivatives of x equal to λ times the

corresponding partials of y, where λ is a constant known as the Lagrange multiplier. This will

give us N equations involving λ, with our constraint as an additional, final equation. We then

solve the set of equations, if possible.

 Our set of equations looks like:

)2(2 0000
gNgyx gg !! ="= (1)

)2(2 iiNgg gNgyx
ii

!! ="= # (2)

)2(2 iNigg gNgyx
iNiN !="=

!!
(3)

 () 1,,
1

0

2

10
==!

"

=

"

N

i

iN gggx K (4)

There are a number of cases here, although it is fairly straightforward to show which gives the

maximum. According to (1), either λ = N or g0 = 0.

CASE 1: (λ = N)
Substituting λ = N into (2) and (3) gives us:

 17

)2(2 iiNgg gNNgNyx
ii

=!= "

)2(2 iNigg gNNgNyx
iNiN !="=

!!
.

These each simplify to the result that iNi gg != . Our objective equation then becomes:

 () !
"

#
$
%

&
=!

"

#
$
%

&
+= ''

(

=

(

=

(

1

0

2
1

1

22

01,,0

N

i

i

N

i

iN gNggNggx
K

.

But recall that (4) tells us that

 1

1

0

2

=!
"

=

N

i

ig ;

this indicates that our function simply equals N:

 () [] NNgNggx
N

i

iN ==!
"

#
$
%

&
= '

(

=

(1
1

0

2

1,,0K
.

CASE 2: (g0 = 0, gi = 0)

If we assume g0 = 0, then we can solve (2) and (3) for gi and gN-i.
 (2, multiplied by λ) iNi Ngg != "" 2)2(2

 (3, multiplied by -N))2(2 2

iNi gNgN !!=! "

 () 02
22 =! Ngi "

This equation provides us with three possibilities: gi = 0, λ = N, or λ = -N. When we take
g0 = 0 and gi = 0 as our second case, the constraint equation (4) is impossible:

 () 10,,
1

0

2

10
!=="

#

=

#

N

i

iN gggy K .

Thus, we can eliminate this case.

CASE 3: (g0 = 0, λ = N)
This case is similar to the first one. It tells us from (2) and (3) that
 iNi gg != ,
and (4) simplifies to

 () 1,,
1

1

2

10
==!

"

=

"

N

i

iN gggy K .

The function value must then be:

 () [] NNgNggx
N

i

iN ==!
"

#
$
%

&
= '

(

=

(1
1

1

2

1,,0K
.

CASE 4: (g0 = 0, λ = -N)
Our final case is a little different. Here, (2) and (3) become:

)2(2 iiNgg gNNgNyx
ii

!="= !

)2(2 iNigg gNNgNyx
iNiN !!="=

!!
.

So in this case,
 iNi gg !!= ,
and substituting this into the functions x and y gives us:

 18

() !
"

#
$
%

&
'= (

'

=

'

1

1

2

1,,0

N

i

iN gNggx
K

() 1,,
1

1

2

10
==!

"

=

"

N

i

iN gggy K .

Using the results of function y in function x yields:

 () [] NNgNggx
N

i

iN !=!="
#

$
%
&

'
!= (

!

=

! 1
1

1

2

1,,0K
.

To summarize these four cases, the extrema values of our function x are N and –N. It is obvious

which of the two must be the maximum that we are seeking. Remember, though, that the true

function we are maximizing is the square root of x, not x itself. This means that the most our error

vector can be magnified by is actually N . ◊◊◊

3.3 THE 2-NORM OF THE DISCRETE FOURIER TRANSFORM, METHOD 2

3.3.1 ANOTHER WAY TO FIND THE 2-NORM OF A MATRIX

 We can also find the 2-norm of a matrix using its characteristic polynomial p to find any

eigenvalues λ. The characteristic polynomial of the NxN matrix M is given by

() ()IMp !! "= det , where I is the NxN identity matrix

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

100

010

001

L

MOMM

L

L

I .

When p(λ) is set equal to zero, we can solve for λ. We can then use λ to find the spectral radius

ρ(M) of the matrix, which is simply !" max)(=M . The 2-norm of the matrix M is given by

[]2
1

2
)(MMM

t!= , where Mt is the transpose of M. [2, p 281]

 19

3.3.2 Background Calculations

 Our Fourier matrix F is symmetric, so FtF = F2. Recall that ()ntWF = , where

1-N 1,..., 0, tn, = . Then we find that ()() ()
!!
"

#
$$
%

&

'

'
===

+

+

tn

Ntn

ntnt

W

WW
WWF

1

1)(0
2 , where n is the

row and t is the column. Just as in section 3.2.2, we end up with terms that equal zero when

01 !"
+tn

W , and they equal N when 1=
+tn

W . We get terms of N, then, whenever

Nn or 01 =+ . There will always be an entry of N at 0== tn , and when N is even we have a

term of N at
2

N
tn == . So, for example,

 N = 4 (even):

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

000

000

000

000

2

N

N

N

N

F , and

 N = 3 (odd):
!
!
!

"

#

$
$
$

%

&

=

00

00

00

2

N

N

N

F .

 Recall that we must first solve for the eigenvalues λ in order to find the spectral radius ρ.

To do this we need to get the characteristic polynomial p for F2, and then set it equal to zero

 () () 0det =!= IFFp
t "" .

Because this involves subtracting λ along the diagonal, we get different results depending upon

whether N is even or odd. Let us examine these two cases.

CASE 1: When N is even, we have:

 () ()IFFp
t !! "= det

 ()IF !"= 2
det

 20

!

!

!

!

"

"

"

"

=

LL

MOMMMM

LL

MMMOMM

LL

LL

00

000

00

000

N

N

N

N

 ()

!

!

!

!

"

"

"

"=

LL

MOMMM

LL

MMMOM

LL

0

00

0

N

N

N

N

 ()

!

!

!

!

"

"

"

"=

L

MOMM

L

L

0

00

0

2

N

N

N

CASE 2: When N is odd, though, we have:

 () ()IFFp
t !! "= det

 ()IF !"= 2
det

!

!

!

!

!

"

"

"

"

"

=

000

000

000

000

0000

L

L

MMOMMM

L

L

L

N

N

N

N

N

 ()

!

!

!

!

!

"

"

"

"

"=

00

00

00

00

L

L

MMOMM

L

L

N

N

N

N

N

 21

 Our characteristic polynomial simplifies in both even and odd cases to include the

determinant

!

!

!

!

"

"

"

"

00

00

00

00

L

L

MMOMM

L

L

N

N

N

N

.

By making this a triangular matrix, the determinant is simply the product of the diagonal entries.

Through Gauss-Jordan elimination, we can get rid of the Ns in the upper half of the matrix, which

gives us

!

!

!
!

!
!

"

"

"

"

00

00

000

000

2

2

L

L

MMOMM

L

L

N

N

N

N

.

We will use this result in our proof of the 2-norm.

3.3.3 FINDING THE 2-NORM

Theorem 3.3.3: The 2-norm of the NxN discrete Fourier transform matrix F is given by

 NF =
2

Proof: If we take advantage of the calculations in 3.3.2, then we have two cases in

finding the eigenvalues that we use to solve for the 2-norm:

 When N is even,

 () 0det)(2 =!= IFp ""

 0])()[()(2
=!+!=

qq
NNN """ , where

2

2!
=
N

q .

 22

 When N is odd,

 () 0det)(2 =!= IFp ""

 0])())[((=!+!=
qq

NNN """ , where
2

1!
=
N

q .

Clearly, in either case, the eigenvalues are –N and N. This makes the spectral radius:

 NF == !" max)(2 .

We can now solve for the 2-norm of our Fourier matrix F:

 [] 2
1

2
)(FFF

t!=

 [] 2
1

2)(F!=

 N= ◊◊◊

This is exactly the solution we had with our first method

CHAPTER 4

 23

∞ -NORM OF THE DISCRETE FOURIER TRANSFORM

4.1 GENERAL SHORTCUT FOR THE ∞ -NORM

Theorem 4.1: [1, p 426] If the matrix A = (aij) is an nxn matrix, then !
=""

#
=

n

j

ij

ni

aA
11

max .

Proof: There are two stages to this proof, and we begin by examining the less-than-or-

equal-to argument. By the definition of the ∞-norm, ()
i

ni

AxA max
1 !!

"
= . But since

() !
=

=
n

j

jiji xaAx
1

, then
i

n

j

jij

ni

xaA !
=""

#
=

11

max . If instead of multiplying aij by the

corresponding xj, we always multiply by the largest entry of x, then

 []j
nj

n

j

ij

nii

n

j

jij

ni

xaxaA maxmaxmax
11111 !!=!!=!!

" ## != .

We can now take advantage of our constraint on x: 1max
1

==
!!

" i

ni

xx . Thus,

!
=""

#
"

n

j

ij

ni

aA
11

max .

 For the greater-than-or-equal to case, we must set up two assumptions. The first is that

we let p be an integer such that !!
=""=

=
n

j

ij

ni

n

j

pj
aa

111

max . Our second assumption is that our

vector x is given by
!
"
#

$

+
=

,1

,1
j
x

if

if

0

0

!

"

pj

pj

a

a
. This still gives us 1max

1

==
!!

" i

ni

xx , which

makes sure that pjjpj
axa = , for all j = 1, 2,…, n.

 By the definition of the matrix ∞-norm, we start off with !
=""

#
=

n

j

jij

ni

xaA
11

max . Since

this is just the largest “row-sum,” it must be greater than or equal to the row-sum of some row p.

Thus,

 24

 !!!
===""

#
=$=

n

j

jpj

n

j

jpj

n

j

jij

ni

xaxaxaA
1111

max .

Due to our initial assumptions of p, we get

 !!
=""=

#
=$

n

j

ij

ni

n

j

jpj axaA
111

max .

 Thus, !
=""

#
=

n

j

ij

ni

aA
11

max . ◊◊◊

4.2 CALCULATION OF THE ∞ -NORM FOR THE DFT

Theorem 4.2: The ∞-norm of the NxN Fourier transform matrix is NF =
!

.

Proof: Recall that our Fourier transform matrix looks like this:

 ()

() () !!
!
!
!
!
!

"

#

$$
$
$
$
$
$

%

&

=!
"

#
$
%

&

'''

'

'

2
11210

12420

1210

0000

NNN

N

N

WWWW

WWWW

WWWW

WWWW

N

n
F

L

MOMMM

K

L

L

.

Then our ∞–norm is given by

!
!
!

"

!!
!

#

$

++++

++++

++++

++++

==

%%%

%

%

%&&

%

=%&&
' (

2)1()1(2)1(0

)1(2420

1(210

0000

11

1

111

)

maxmax

NNN

N

N

Ni

N

j

ij

Ni

WWWW

WWWW

WWWW

WWWW

fF

L

M

L

L

L

.

We immediately recognize that we can simplify this with our previous results (from 3.2.2). These

tell us that between the nature of the sum of a finite geometric series and that of the rotation

operator W, the top equation simplifies to N, and each of the others simplify to 0. Then our ∞-

norm for the DFT must then just be N. ◊◊◊

 25

CHAPTER 5
1-NORM OF THE DISCRETE FOURIER TRANSFORM

5.1 GENERAL SHORTCUT FOR THE 1-NORM

 It turns out that the 1-norm of a matrix has a similar feel to the ∞-norm, in that it can be

given by the largest column sum of the matrix:

 26

Theorem 5.1: [2, p. 283] !
=""#

==
n

i

ij

njx

aAxA
11

1

1

1 maxmax
1

, where !
=

=
n

i

i
xx

1

11
.

Proof: We already have stated that !!
"

=

"

=

=
1

0

1

0

1

N

i

N

j

jij xaAx . The scalar triangle inequality

then tells us that j

N

i

N

j

ij

N

i

N

j

jij xaxaAx !!!!
"

=

"

=

"

=

"

=

#=
1

0

1

0

1

0

1

0

1
. Expanded, this looks like:

 ()1)1(0101000

1

0

1

0
1

 !!

!

=

!

=

+++"# $$ NNj

N

i

N

j

ij xaxaxaxaAx L

 ()1)1(1111010 !!++++
NN
xaxaxa L

 M

 ()1)1)(1(11)1(00)1(!!!!! ++++
NNNNN
xaxaxa L .

If we collect some like terms, we can rewrite this as:

 ()0)1(100001
 !+++"

N
aaaxAx L

 ()1)1(11011 !++++
N

aaax L

 M

 ())1)(1()1(1)1(01 !!!!! ++++
NNNNN

aaax L .

 ! !
"

=

"

=

#
$

%
&
'

(
)

1

0

1

0

1

N

j

N

i

ijj axAx .

Now, instead of multiplying each j
x by its corresponding j-column summation, we could

instead multiply by the largest column summation each time. Naturally, we would expect this

value to be greater than or equal to our current solution. This gives us:

 !
"

#
$
%

&
!
!
"

#
$
$
%

&
'!

"

#
$
%

&
' ((((

)

=
)''

)

=

)

=

)

=

1

0
1

1

0

1

0

1

0

1
max

N

i

ij
Njz

N

j

j

N

j

N

i

ijj axaxAx .

 27

Remember, though, that 1

1

0

=!
!
"

#
$
$
%

&
'
(

=

N

j

jx , so we really have !
"

=
"##

#
1

0
1

1
max

N

i

ij
Njz

aAx .

 In order to make this an equality, though, we need to look at the problem from another

angle. Let
!
"
#

=
entriesother allfor ,0

entry k for the ,1 th

k
e be the kth unit vector. If we say that our vector

k
ex =

and that A*k is the column with the largest sum, then 1
1
=x and

!
"

=
"##

===
1

0
101*11

max

N

i

ij
Nj

kk aAAeAx . ◊◊◊

5.2 CALCULATION OF THE 1-NORM FOR THE DFT

 Of course, when we put this shortcut to use, the 1-norm of the DFT is simple.

Theorem 5.2: The 1-norm of the NxN discrete Fourier transform matrix is

 NF =
1

.

Proof: Since the Fourier transform matrix is symmetric, the largest column sum is

exactly the same as the ∞-norm’s largest row sum, which we know from the ∞–norm to simply

be N: NF =
1

. ◊◊◊

CHAPTER 6
3-NORM OF THE DISCRETE FOURIER TRANSFORM

 The setup for the 3-norm is similar to that of the 2-norm. We have an Nx1 vector x, for

which we have a corresponding NxN Fourier matrix F.:

 28

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

'''

'

)1)(1(10

110

000

NNN

N

WWW

WWW

WWW

F

K

MOMM

L

L

This means that we need to maximize

 [++++++++= !

!

!

3

1

1

1

1

0

0
3

1

0

1

0

0

0

3 N

N

N
xWxWxWxWxWxWFx LL

3
1

3

1

)1)(1(

1

1

0

0

!"
#++++ $

$$$
N

NNN
xWxWxW LL ,

subject to 1
3
=x . Mathematica® is unable to solve the Lagrange multiplier’s equations.

However, we can work around this by calculating the 3-norm for a large number of random unit

vectors, with various values of N, and keep track of which unit vector gives the maximum for

each N. The data from just such a test can be found in Appendix A, while Appendix B contains

the code for the Java® program that was used in these calculations. The experimental evidence

from these trials suggests that there is reason to believe the following:

Conjecture 6.0: The 3-norm of the Nx1 vector
3

Fx is maximized subject to the Nx1

vector 1
3
=x when

3
110

1

N

xxx
N

==== !L .

 If this conjecture is true, then we can solve for the 3-norm from there.

Theorem 6.0: Assume that the 3-norm of the Nx1 vector
3

Fx is maximized subject to the Nx1

vector 1
3
=x when

3
110

1

N

xxx
N

==== !L . Then the 3-norm for the NxN discrete Fourier

transform matrix is

 3
2

3
NF =

Proof: If we substitute the xi values into the equation we were to maximize, we get

 29

+!!
"

#
$$
%

&
++!!

"

#
$$
%

&
+!!
"

#
$$
%

&
+

'
'
(

)
!!
"

#
$$
%

&
++!!

"

#
$$
%

&
+!!
"

#
$$
%

&
=

*

3

3

1

3

1

3

0

3

3

0

3

0

3

0

3

111111

N

W

N

W

N

W

N

W

N

W

N

WFx
N

LL

3
1

3

3

)1)(1(

3

1

3

0 111

!
!

"

#

$$
%

&
''
(

)
++$$

%

&
''
(

)
+$$
%

&
''
(

)
+

N

W

N

W

N

W
NNN

LL .

If we then factor all of the !!
"

#
$$
%

&
3

1

N

 terms, we have

 [++++++++!!
"

#
$$
%

&
= ' 3

110
3

000

33

1 N
WWWWWW

N

Fx LL

3
1

3
)1)(1(10

!"
#++++

$$$ NNN
WWW LL .

From our previous results in section 3.2.2, we know that all of the absolute value terms drop out

except for the first one, which leaves us with

() () 3
2

3

3

3
1

000

33

11
NN

N

WWW

N

Fx =!!
"

#
$$
%

&
=

'(
)

*+
, +++!!
"

#
$$
%

&
= L . ◊◊◊

CHAPTER 7
P-NORM OF THE DISCRETE FOURIER TRANSFORM

 We can generalize the results of the 3-norm to that of the p-norm, where 3!p . We still

have an Nx1 vector x, for which we have a corresponding NxN Fourier matrix F.:

!
!
!
!
!

"

#

$
$
$
$
$

%

&

=

'''

'

)1)(1(10

110

000

NNN

N

WWW

WWW

WWW

F

K

MOMM

L

L

 30

Then we need to maximize

 [++++++++= !

!

!

p

N

N
p

Np
xWxWxWxWxWxWFx

1

1

1

1

0

0

1

0

1

0

0

0
LL

pp

N

NNN
xWxWxW

1

1

)1)(1(

1

1

0

0

!"
#++++ $

$$$
LL ,

subject to 1=
p

x . The Java® program in Appendix B can also be used for higher values of p,

and the data suggests that our Conjecture 6.0 can also be generalized for 3!p :

Conjecture 7.0: Let there be an integer p, where 3!p . The p-norm of the Nx1 vector

p
Fx is maximized subject to the Nx1 vector 1=

p
x when

pN
N

xxx
1

110
==== !L .

 If this conjecture is true, then we can solve for the p-norm.

Theorem 7.0: Assume that the p-norm of the Nx1 vector
p

Fx is maximized subject to the

Nx1 vector 1=
p

x when
pN
N

xxx
1

110
==== !L , where 3!p . Then the p-norm for the

NxN discrete Fourier transform matrix is

 pNF
p

1
1!

=

Proof: If we substitute the xi values into the equation we were to maximize, we get

+!!
"

#
$$
%

&
++!!

"

#
$$
%

&
+!!
"

#
$$
%

&
+

'
'
(

)
!!
"

#
$$
%

&
++!!

"

#
$$
%

&
+!!
"

#
$$
%

&
=

*

p

p

N

pp

p

pppp
N

W
N

W
N

W
N

W
N

W
N

WFx
111111 110000

LL

pp

p

NN

p

N

p
N

W
N

W
N

W

1

)1)(1(10 111

!
!

"

#

$$
%

&
''
(

)
++$$

%

&
''
(

)
+$$
%

&
''
(

)
+

LL .

If we then factor all of the !!
"

#
$$
%

&
p
N

1
 terms, we have

 31

 [++++++++!!
"

#
$$
%

&
= ' p

N
p

pp
WWWWWW

N
Fx

1100001
LL

pp

NNN
WWW

1

)1)(1(10

!"
#++++

$$$
LL .

From our previous results in section 3.2.2, all of the absolute value terms drop out except for the

first one, and we are left with

 () () pNN
N

WWW
N

Fx
p

p

p

pp

1
11

000 11 !
=""

#

$
%%
&

'
=

()
*

+,
- +++""
#

$
%%
&

'
= L . ◊◊◊

CHAPTER 8
FUTURE WORK

 So far, our research has proven the following:

Theorem 3.2.2: !
"

#
$
%

&
+=!

"

#
$
%

&
= '' '

(

=

(

(

=

(

=

(

1

1

2

0

2
1

0

1

0

10),,(
N

k

kNk

N

n

N

t

t

nt

n gggNgWggx K

Theorem 3.2.3/3.3.3: The 2-norm of the NxN Fourier transform matrix is NF =
2

Theorem 4.2: The ∞-norm of the NxN Fourier transform matrix is NF =
!

.
Theorem 5.2: The 1-norm of the NxN discrete Fourier transform matrix is

 32

 NF =
1

.

Theorem 6.0: Assume that the 3-norm of the Nx1 vector
3

Fx is maximized subject to the Nx1

vector 1
3
=x when

3
110

1

N

xxx
N

==== !L . Then the 3-norm for the NxN discrete Fourier

transform matrix is

 3
2

3
NF =

Theorem 7.0: Assume that the p-norm of the Nx1 vector
p

Fx is maximized subject to the

Nx1 vector 1=
p

x when
pN
N

xxx
1

110
==== !L , where 3!p . Then the p-norm for the

NxN discrete Fourier transform matrix is

 pNF
p

1
1!

=

 We can summarize the various norms for the DFT as:

p 1 2 3 3!p ∞

norm NF =
1

 NF =
2

 3
2

3
NF = pNF

p

1
1!

= NF =
!

 However, the 3-norm and generalized p-norm are based on Conjecture 6.0 and

Conjecture 7.0, respectively. In the future, we will try again to prove that our norms for 3!p

occur when
pN
N

xxx
1

110
==== !L . It is possible that there is some simplification based

upon the nature of the Fourier transform which we have not yet taken into account.

 We also still need to calculate the Fourier transform based on Dr. Glander’s experimental

data for electron diffraction. In doing so, we could compare the data with its expected values, to

see how much error there is going into the DFT. We could then check how much the error is

actually magnified on average, compared to the worst-case scenario that the p-norm provides. It

is possible that this would explain, in part, why even newer methods for finding a crystal’s

surface structure are giving results more like those obtained through the traditional method.

 33

 Finally, it is of interest that Conjecture 7.0 does not support p = 1 or p = 2, and Theorem

7.0 turns out to support p = 2 but not p = 1, even though it makes no claims of doing so. We had

already figured out these results using other means, so it was not a problem. However, it would be

worth taking the time to figure out why this happens.

 34

 APPENDIX A

 (This following data are the output from the Java® program that supports Conjecture 6.0

and Conjecture 7.0. The program itself can be found in Appendix B. The norms for p = 2, 3, 4 are

shown here, with calculations done for N = 2, 3, 4. The printouts show how many trials were

performed for each combination of N and p, the largest norm that was achieved from those trials,

and the entries of the unit vector that provide this maximum.

 For reference, just above each set of data is the expected norm and unit vector entry,

according to the Conjectures and their resulting Theorem 6.0 and Theorem 7.0. It should be noted

that Conjecture 7.0 does not support p = 2, so it is of no consequence that its “expected” unit

vector values do not match the experimental values. Recall that any unit vector for p = 2 provides

the norm, which does match the expected norm value.)

p = 2:

(expected norm: 1.414213562 #0.707106781)
N = 2, p = 2.0, number of trials = 1000000, maxNorm = 1.4142135623730956
x0: 0.5571649819397294
x1: 0.8304018201449834

(expected norm: 1.732050808 #0.577350269)
N = 3, p = 2.0, number of trials = 1000000, maxNorm = 1.7320508075688656
x0: 0.5769219272285501
x1: 0.5496867100296532
x2: 0.6041569421099718

(expected norm: 2 #0.5)
N = 4, p = 2.0, number of trials = 1000000, maxNorm = 1.9999999999999998
x0: 0.05774506011610977
x1: 0.19890402295883308
x2: 0.057745065280469327
x3: 0.9766105698377082

p = 3:

(expected norm: 1.587401052; expected unit vector values: 0.793700526)
N = 2, p = 3.0, number of trials = 1000000, maxNorm = 1.5874010519681705
x0: 0.7937004152177145
x1: 0.793700636750456

(expected norm: 2.080083823; expected unit vector values: 0.693361274)
N = 3, p = 3.0, number of trials = 1000000, maxNorm = 2.080083675654963
x0: 0.6931452974234525
x1: 0.6935961972124336
x2: 0.6933421810170675

 35

(expected norm: 2.5198421; expected unit vector values: 0.629960525)
N = 4, p = 3.0, number of trials = 1000000, maxNorm = 2.519838515272478
x0: 0.6305531481286869
x1: 0.6291912703321297
x2: 0.6292406054610216
x3: 0.6308534904449358

p = 4:

(expected norm: 1.681792831; expected unit vector values: 0.840896415)
N = 2, p = 4.0, number of trials = 1000000, maxNorm = 1.6817928305074292
x0: 0.8408964106308133
x1: 0.8408964198766158

(expected norm: 2.279507057; expected unit vector values: 0.759835686)
N = 3, p = 4.0, number of trials = 1000000, maxNorm = 2.2795063985776904
x0: 0.7601348967627876
x1: 0.7600012492642936
x2: 0.7593702525505998

(expected norm: 2.828427125; expected unit vector values: 0.707106781)
N = 4, p = 4.0, number of trials = 1000000, maxNorm = 2.8283493068906322
x0: 0.711150018768841
x1: 0.7028763737203395
x2: 0.7082664787000142
x3: 0.7060564355606014

 36

APPENDIX B

//Figures out the maximum value based on our unity constraint,
//for the p-norm of the DFT
//April 15, 2004; Math Sen Res, Stetson University
//Hope Wymer

import java.util.Random;
import java.lang.Math;
class ConjectureProof
{
 public static void main(String[] args)
 {
 Random rand = new Random();

 int N, numTrials;
 double p, vectorNorm, matrixNorm, maxNorm;

 N = 2;
 p = 2;
 numTrials = 10000000;
 maxNorm = 0;

 double[] randomVector = new double[N];
 double[] unitVector = new double[N];
 double[] maxXVector = new double[N];
 double[] sum2 = {0,0};

 //runs the process "numTrials" times
 for (int k=0; k<numTrials; k++)
 {
 //fills the vector with random integers
 for (int i=0; i<N; i++)
 {
 randomVector[i] = Math.abs(rand.nextInt());
 }

 double sum1 = 0;

 //finds the p-norm of the random vector
 for (int i=0; i<N; i++)
 {
 sum1 = sum1 + Math.pow(randomVector[i], p);
 }
 vectorNorm = Math.pow(sum1, (1/p));

 //forces our random vector to be a unit vector
 for(int i=0; i<N; i++)
 {
 unitVector[i] = randomVector[i]/vectorNorm;
 }

 double[][][] fourierMatrix = new double[N][N][2];

 //N=2 Fourier matrix
 if (N==2)
 {
 double[][][] fourierMatrix2 = { { {1,0},{ 1,0} },
 { {1,0},{-1,0} } };
 fourierMatrix = fourierMatrix2;
 }

 //N=3 Fourier matrix

 37

 if (N==3)
 {
 double root3 = Math.sqrt(3);

 double[][][] fourierMatrix2
 = { { {1,0},{ 1, 0},{ 1, 0} },
 { {1,0},{-0.5, root3/2},{-0.5,-root3/2} },
 { {1,0},{-0.5,-root3/2},{-0.5, root3/2} } };
 fourierMatrix = fourierMatrix2;
 }

 //N=4 Fourier matrix
 if (N==4)
 {
 double[][][] fourierMatrix2
 = { { {1,0},{ 1, 0},{ 1,0},{ 1, 0} },
 { {1,0},{ 0, 1},{-1,0},{ 0,-1} },
 { {1,0},{-1, 0},{ 1,0},{-1, 0} },
 { {1,0},{ 0,-1},{-1,0},{ 0, 1} } };
 fourierMatrix = fourierMatrix2;
 }

 double[][] fourierVector = new double[N][2];

 //Fourier matrix times random unit vector
 //changes row
 for (int i=0; i < N; i++)
 {
 //changes column
 for (int j=0; j < N; j++)
 {
 fourierVector[i][0] = fourierVector[i][0]
 + fourierMatrix[i][j][0] * unitVector[j];
 fourierVector[i][1] = fourierVector[i][1]
 + fourierMatrix[i][j][1] * unitVector[j];
 }
 }

 double[][] fourierVectorPth;
 //raises the fourierVector entries to the p-th, keeps a running sum.
 //in the ith row
 for (int i=0; i<N; i++)
 {
 double real, imag;

 real = fourierVector[i][0];
 imag = fourierVector[i][1];

 //does the multiplication (p-1) times
 for (int j=1; j<p; j++)
 {
 double realTemp = real;
 double imagTemp = imag;

 real = realTemp*fourierVector[i][0]
 - imagTemp*fourierVector[i][1];
 imag = realTemp*fourierVector[i][1]
 + imagTemp*fourierVector[i][0];
 }

 fourierVector[i][0] = Math.abs(real);
 fourierVector[i][1] = Math.abs(imag);
 }

 38

 //sums the powered entries of fourierVector[][]
 sum2[0] = 0;
 sum2[1] = 0;

 for (int i=0; i<N; i++)
 {
 sum2[0] = sum2[0] + fourierVector[i][0];
 sum2[1] = sum2[1] + fourierVector[i][1];
 }

 //compares the p-norm, raised to the pth power
 double sumNormSquared;
 sumNormSquared = Math.pow(Math.sqrt(sum2[0]*sum2[0]
 + sum2[1]*sum2[1]),(1/p));
 if (sumNormSquared > maxNorm)
 {
 maxNorm = sumNormSquared;
 for (int i=0; i<N; i++)
 {
 maxXVector[i] = unitVector[i];
 }
 }
 }

 System.out.println("N = "+N+", p = "+p+", number of trials = "
 +numTrials+", maxNorm = "+maxNorm);
 for (int i=0; i<N; i++)
 {
 System.out.println("x"+i+ ": " + maxXVector[i]);
 }

 } //method main
}

 39

REFERENCES

[1] Burden, Richard L. and J. Douglas Faires, Numerical Analysis, Brooks/Cole, Pacific Grove,
CA, 2001.

[2] Meyer, Carl D., Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

[3] Transnational College of LEX, Who is Fourier? A Mathematical Adventure, Language
Research Foundation, Boston, 1995.

[4] Williams, Gareth, Linear Algebra with Applications, Wm. C. Brown Publishers, Dubuque, IA,
1991.

