Can you find one of the missing tilings? Can you prove that they do not exist? How about for larger sums? We continue the tradition of offering a $10 prize to the most numerous new contributions.
Claudio Baiocchi generalized some existing tilings to give tilings for these formulas:
George Sicherman added these tilings:
Here are the known tilings:
Sum | Equation | Packing |
---|---|---|
4 | 2=1111 | |
9 | 3=221 | ? |
9 | 3=211111 | |
10 | 31=2211 | |
12 | 3111=222 | |
13 | 32=2221 | |
16 | 4=32111 | |
17 | 41=322 | |
18 | 411=33 | ? |
18 | 33=3221 | ? |
18 | 33=222211 | |
19 | 4111=331 | George Sicherman |
20 | 42=3311 | |
22 | 4211=332 | |
25 | 5=43 | |
25 | 5=4221 | |
25 | 43=4221 | |
25 | 5=332111 | ? |
26 | 51=3322 | |
27 | 511=333 | ? |
27 | 422111=333 | |
27 | 4311=333 | ? |
28 | 5111=3331 | George Sicherman |
28 | 5111=4222 | |
28 | 4222=3331 | |
29 | 52=33311 | George Sicherman |
31 | 5211=3332 | George Sicherman |
31 | 5111111=3332 | |
32 | 52111=44 | ? |
32 | 51111111=44 | Claudio Baiocchi |
32 | 44=33321 | |
33 | 522=333211 | Claudio Baiocchi |
33 | 522=441 | |
34 | 53=4411 | |
34 | 53=3332111 | George Sicherman |
35 | 44111=33322 | George Sicherman |
35 | 52211=4331 | George Sicherman |
36 | 6=5311 | ? |
36 | 6=522111 | |
36 | 6=441111 | |
36 | 6=43311 | ? |
36 | 6=4322111 | |
36 | 6=333221 | ? |
36 | 6=33222211 | |
36 | 5311=442 | George Sicherman |
37 | 61=53111 | ? |
37 | 61=5222 | ? |
37 | 61=433111 | |
37 | 61=43222 | |
37 | 61=3332211 | |
38 | 611=532 | |
38 | 611=52221 | |
38 | 611=4332 | |
38 | 52221=4332 | George Sicherman |
39 | 6111=333222 | Tino Jonker |
40 | 62=53211 | George Sicherman |
40 | 62=433211 | |
41 | 621=54 | ? |
41 | 621=443 | |
42 | 6211=541 | George Sicherman |
43 | 62111=4333 | George Sicherman |
43 | 62111=533 | ? |
44 | 622=5331 | |
44 | 622=43331 | |
44 | 622=443111 | |
44 | 5331=44222 | George Sicherman |
45 | 63=542 | ? |
45 | 63=53311 | ? |
45 | 53311=4432 | Claudio Baiocchi |
46 | 631=5421 | Claudio Baiocchi |
48 | 63111=444 | George Sicherman |
49 | 7=632 | ? |
49 | 7=62221 | ? |
49 | 7=62211111 | |
49 | 7=5422 | ? |
49 | 7=5421111 | ? |
49 | 7=5411111111 | ? |
49 | 7=533211 | ? |
49 | 7=53222111 | |
49 | 7=5222222 | ? |
49 | 7=5222221111 | |
49 | 7=4441 | ? |
49 | 7=4333211 | |
49 | 7=43222222 | |
49 | 7=4222222221 | ? |
49 | 7=4222222211111 | |
49 | 7=333332 | ? |
49 | 632=5422 | George Sicherman |
49 | 632=4441 | George Sicherman |
50 | 71=6321 | George Sicherman |
50 | 71=55 | Gavin Theobald |
50 | 71=54221 | George Sicherman |
50 | 71=4433 | |
50 | 6321=55 | George Sicherman |
50 | 55=44411 | ? |
51 | 711=5431 | George Sicherman |
51 | 551=444111 | ? |
52 | 7111=64 | ? |
52 | 7111=62222 | |
52 | 7111=5333 | Claudio Baiocchi |
52 | 7111=4442 | George Sicherman |
52 | 7111=43333 | ? |
52 | 64=5511 | George Sicherman |
52 | 5333=4442 | George Sicherman |
53 | 72=54222 | ? |
53 | 72=54221111 | |
53 | 72=44421 | George Sicherman |
53 | 72=433331 | Claudio Baiocchi |
54 | 721=6411 | George Sicherman |
54 | 721=5432 | Claudio Baiocchi |
54 | 552=444211 | George Sicherman |
56 | 72111=63311 | George Sicherman |
57 | 552111=4443 | George Sicherman |
58 | 73=64211 | George Sicherman |
58 | 73=5522 | George Sicherman |
58 | 73=5441 | George Sicherman |
58 | 7221=6332 | George Sicherman |
58 | 6332=5441 | George Sicherman |
Corey Plover noticed that if fractals are allowed, then these regions are easier to find. He gives a fractal to illustrate 32=22+22+12:
Claudio Baiocchi noticed that 32=22+22+12 has a solution on the projective plane:
The winner of the $10 prize this month is Claudio Baiocchi.
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 9/7/15.