Let f(m,n) be the smallest k that works for a given m and n.
It is clear that f(1,n) = f(2,n) = n/3 and f(a+b,n) ≤ f(a,n) + f(b,n).
Joe DeVincentis showed the following general bounds for large n:
f(4,4n)≤n
f(5,9n–7)≤2n
f(5,9n–2)≤2n+1
f(6,5n–7)≤n
f(6,11n–3)≤2n+1
f(6,11n–9)≤2n
m\n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 | 7 |
2 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 | 7 |
3 | 1 | 1 | EF | 2 | 2 | 2 | 3 | 3 | 3 | EF | 4 | 4 | 4 | 5 | 5 | 5 | JD | 6 | 6 | 6 |
4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | JD | 3 | 3 | 3 | EF | 4 | 4 | 4 | EF | 5 | 5 | 5 | JD |
5 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | JD |
6 | 2 | 2 | 2 | 2 | 3 | 3 | EF | 4 | 4 | 4 | 4 | 4 | JD | 5 | 5 | 5 | 5 | JD | 6 | 6 |
7 | 3 | 3 | 3 | 2 | 3 | EF | 4 | 4 | 4 | JD | JD | JD | 4 | JD | JD | JD | JD | JD | JD | JD |
8 | 3 | 3 | 3 | JD | 4 | 4 | 4 | JD | JD | 5 | JD | JD | JD | JD | JD | JD | JD | JD | JD | 7 |
9 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | JD | 5 | 5 | JD | JD | JD | JD | JD | JD | JD | JD | JD | 7 |
10 | 4 | 4 | EF | 3 | 4 | 4 | JD | 5 | 5 | 5 | 5 | JD | JD | JD | JD | JD | JD | JD | JD | 7 |
11 | 4 | 4 | 4 | 3 | 4 | 4 | JD | JD | JD | 5 | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD |
12 | 4 | 4 | 4 | EF | 4 | 4 | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD | JD |
13 | 5 | 5 | 4 | 4 | 5 | JD | 4 | JD | JD | JD | JD | JD | 8 | JD | JD | JD | JD | JD | JD | JD |
14 | 5 | 5 | 5 | 4 | 5 | 5 | JD | JD | JD | JD | JD | JD | JD | |||||||
15 | 5 | 5 | 5 | 4 | 5 | 5 | JD | JD | JD | JD | JD | JD | JD | |||||||
16 | 6 | 6 | 5 | EF | 6 | 5 | JD | JD | JD | JD | JD | JD | JD | |||||||
17 | 6 | 6 | JD | 5 | 6 | 5 | JD | JD | JD | JD | JD | JD | JD | |||||||
18 | 6 | 6 | 6 | 5 | 6 | JD | JD | JD | JD | JD | JD | JD | JD | |||||||
19 | 7 | 7 | 6 | 5 | 6 | 6 | JD | JD | JD | JD | JD | JD | JD | |||||||
20 | 7 | 7 | 6 | JD | JD | 6 | JD | 7 | 7 | 7 | JD | JD | JD |
If you can extend any of these results, please e-mail me. Click here to go back to Math Magic. Last updated 6/1/16.